【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B(AB右),與y軸交于C,直線y=﹣x+5經(jīng)過點(diǎn)B、C.

(1)求拋物線的解析式;

(2)點(diǎn)P為第二象限拋物線上一點(diǎn),設(shè)點(diǎn)P橫坐標(biāo)為m,點(diǎn)P到直線BC的距離為d,求dm的函數(shù)解析式;

(3)在(2)的條件下,若∠PCB+∠POB=180°,求d的值.

【答案】(1)y=﹣x2+x+5(2)d=m2m(﹣2<m<0)(3)

【解析】

(1)首先求出B、C兩點(diǎn)坐標(biāo),再利用待定系數(shù)法即可解決問題;

(2)如圖1中,作PEBCE,作PFABBCF.只要證明PEF是等腰直角三角形,想辦法求出PF(用m表示),即可解決問題;

(3)首先證明O、B、C、P四點(diǎn)共圓,推出∠CPB=COB=90°,可得PH=BC=,由P(m,﹣m2+m+5),H(,),可得(m﹣2+(﹣m2+m+5﹣2,解方程去m,再利用(2)中結(jié)論即可解決問題.

(1)∵直線y=﹣x+5經(jīng)過點(diǎn)B、C,

B(5,0),C(0,5),

B、C坐標(biāo)代入y=﹣x2+bx+c得到: ,

解得

∴二次函數(shù)的解析式為y=﹣x2+x+5;

(2)如圖1中,作PEBCE,作PFABBCF.

P(m,﹣m2+m+5),

PFAB,

∴點(diǎn)F的縱坐標(biāo)為﹣m2+m+5,

則有﹣m2+m+5=﹣x+5,

x=m2m,

PF=m2m﹣m=m2m,

OB=OC,BOC=90°,

∴∠EFP=OBC=45°,PEEF,

∴△PEF是等腰直角三角形,

d=PE=PF=m2m(﹣2<m<0);

(3)如圖2中,取BC的中點(diǎn)H,連接PH.

∵∠PCB+POB=180°,

O、B、C、P四點(diǎn)共圓,

∴∠CPB=COB=90°,

PH=BC=,

P(m,﹣m2+m+5),H(),

(m﹣2+(﹣m2+m+5﹣2

整理得:m(m﹣5)(m2﹣m﹣2)=0,

解得m=05或﹣12,

P在第二象限,

m=﹣1,

d=m2m=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某一過街天橋的示意圖,天橋高米,坡道傾斜角,在距點(diǎn)米處有一建筑物.為方便行人上下天橋,市政部門決定減少坡道的傾斜角,但要求建筑物與新坡角處之間地面要留出不少于米寬的人行道.

若將傾斜角改建為(即),則建筑物是否要拆除?(

若不拆除建筑物,則傾斜角最小能改到多少度(精確到)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的手機(jī)沒電了,現(xiàn)有一個(gè)只含A,B,C,D四個(gè)同型號(hào)插座的插線板(如圖,假設(shè)每個(gè)插座都適合所有的充電插頭,且被選中的可能性相同),請(qǐng)計(jì)算:

(1)若小明隨機(jī)選擇一個(gè)插座插入,則插入A的概率為   

(2)現(xiàn)小明對(duì)手機(jī)和學(xué)習(xí)機(jī)兩種電器充電,請(qǐng)用列表或畫樹狀圖的方法表示出兩個(gè)插頭插入插座的所有可能情況,并計(jì)算兩個(gè)插頭插在相鄰插座的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張面積為100cm2的正方形紙片,其正投影的面積可能是100cm2嗎?可能是80cm2嗎?可能是120cm2嗎?試確定這張正方形紙片的正投影面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.

(1)求證:四邊形ABFC是菱形;

(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,,射線,點(diǎn)從點(diǎn)出發(fā)沿射線的速度運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿射線的速度運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.

1)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),_________,當(dāng)點(diǎn)在線段的延長線上運(yùn)動(dòng)時(shí),_________(請(qǐng)用含的式子表示);

2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)以點(diǎn),為頂點(diǎn)的四邊形是平行四邊形時(shí),求的值;

3)求當(dāng)_________時(shí),兩點(diǎn)間的距離最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC△DEF關(guān)于點(diǎn)O成中心對(duì)稱.

(1)作出它們的對(duì)稱中心O,并簡要說明作法;

(2)AB=6,AC=5,BC=4,求△DEF的周長;

(3)連接AF,CD,試判斷四邊形ACDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測量工具和所學(xué)的幾何知識(shí)測量小雁塔的高度,由于觀測點(diǎn)與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進(jìn)行兩次測量,于是在陽光下,他們首先利用影長進(jìn)行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時(shí)木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,ABBF,CDBF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店出售一種水果,經(jīng)過市場估算,若每個(gè)售價(jià)為20元時(shí),每周可賣出300個(gè).經(jīng)過市場調(diào)查,如果每個(gè)水果每降價(jià)1元,每周可多賣出25個(gè),若設(shè)每個(gè)水果的售價(jià)為x(x<20).

(1)則這一周可賣出這種水果為________個(gè)(用含x的代數(shù)式表示);

(2)若該周銷售這種水果的收入為6400元,那么每個(gè)水果的售價(jià)應(yīng)為多少元?

查看答案和解析>>

同步練習(xí)冊答案