如圖,M(a,a+1)是對(duì)稱軸平行于y軸的拋物線上的一點(diǎn),a和a+1是斜邊上的中線等于數(shù)學(xué)公式的直角三角形的兩條直角邊的長(zhǎng),A是拋物線和x軸的交點(diǎn),且OA=10k,1<k<6,k是整數(shù),關(guān)于x的方程x2-2(k-1)x+k2-4=0的兩根也是整數(shù).
(1)求點(diǎn)M和A的坐標(biāo);
(2)求這段拋物線OMA的解析式,并寫出自變量的取值范圍;
(3)求這段拋物線OMA上的點(diǎn)的最大縱坐標(biāo).

解:(1)由題意得:a2+(a+1)2=(2×2,
整理,得:a2+a-30=0,
解得:a1=5,a2=-6,
∵點(diǎn)M在一象限,
∴a2=-6應(yīng)舍去,
把a(bǔ)1=5代入a+1=6,可得點(diǎn)M(5,6),
解方程x2-2(k-1)x+k2-4=0,得:x=k+1±
∵方程的兩根是整數(shù),
∴2k+5是一個(gè)完全平方數(shù),
設(shè)2k+5=m2(m為整數(shù)),則k=
∴1<k<6,即1<<6,
解得:7<m2<17,
∵2k+5是奇數(shù),
∴m2=9,即2k+5=9,
解得:k=2,
∴OA=10k=20,
∴點(diǎn)A的坐標(biāo)為(20,0);

(2)設(shè)這段拋物線的解析式為y=ax2+bx+c(0≤x≤20),
由O(0,0)、M(5,6)、A(20,0)三點(diǎn)在這段拋物線上,
可得
解得:a=-,b=,c=0,
則這段拋物線解析式為y=-x2+x(0≤x≤20);

(3)∵這段拋物線的頂點(diǎn)的縱坐標(biāo)最大,
∴最大縱坐標(biāo)為y===8.
分析:(1)由直角三角形斜邊上的中線等于斜邊的一半求出斜邊的長(zhǎng),由a與a+1為兩直角邊,利用勾股定理列出關(guān)于a的方程,求出方程的解得到a的值,確定出M坐標(biāo),利用配方法表示出已知方程的解,根據(jù)方程的解為整數(shù),確定出k的值,即可確定出A的坐標(biāo);
(2)設(shè)這段拋物線的解析式為y=ax2+bx+c(0≤x≤20),將O,A,M坐標(biāo)代入得到關(guān)于a,b及c的方程組,求出方程組的解得到a,b及c的值,確定出拋物線解析式,求出自變量范圍即可;
(3)這段拋物線點(diǎn)的最大縱坐標(biāo)即為頂點(diǎn)縱坐標(biāo),利用頂點(diǎn)坐標(biāo)公式求出即可.
點(diǎn)評(píng):此題考查了二次函數(shù)綜合題,涉及的知識(shí)有:直角三角形斜邊上的中線性質(zhì),勾股定理,待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)的頂點(diǎn)坐標(biāo),弄清題意是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點(diǎn)是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點(diǎn),過(guò)A,B兩點(diǎn)分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點(diǎn)得菱形,又順次連接菱形各邊中點(diǎn)得矩形,再順次連接矩形各邊中點(diǎn)得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖是某幾何體的三視圖,則這個(gè)幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案