【題目】如圖,在直角坐標系中,點A、B的坐標分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當△ABC的周長最小時,點C的坐標是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=2∠B,(1)如圖①,當∠C=90°,AD為∠ABC的角平分線時,在AB上截取AE=AC,連接DE,易證AB=AC+CD.請證明AB=AC+CD;
(2)①如圖②,當∠C≠90°,AD為∠BAC的角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關系?請直接寫出你的結論,不要求證明;
②如圖③,當∠C≠90°,AD為△ABC的外角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關系?請寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀理解)
點A、B、C為數(shù)軸上三點,如果點C在A、B之間且到A的距離是點C到B的距離3倍,那么我們就稱點C是{A,B}的奇點.
例如,如圖1,點A表示的數(shù)為﹣3,點B表示的數(shù)為1.表示0的點C到點A的距離是3,到點B的距離是1,那么點C是{A,B}的奇點;又如,表示﹣2的點D到點A的距離是1,到點B的距離是3,那么點D就不是{A,B}的奇點,但點D是{B,A}的奇點.
(知識運用)
如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣3,點N所表示的數(shù)為5.
(1)數(shù) 所表示的點是{M,N}的奇點;數(shù) 所表示的點是{N,M}的奇點;
(2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣50,點B所表示的數(shù)為30.現(xiàn)有一動點P從點B出發(fā)向左運動,當P點運動到數(shù)軸上的什么位置時,P、A和B中恰有一個點為其余兩點的奇點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,P是線段AB上的一點,在AB的同側作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,點E、F、G、H分別是AC、AB、BD、CD的中點,順次連接E、F、G、H.
(1)猜想四邊形EFGH的形狀,直接回答,不必說明理由;
(2)當點P在線段AB的上方時,如圖2,在△APB的外部作△APC和△BPD,其他條件不變,(1)中的結論還成立嗎?說明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他條件不變,先補全圖3,再判斷四邊形EFGH的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數(shù)是( )
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC為等邊三角形,點E、F分別在BC和AB上,且CE=BF,AE與CF相交于點H.
(1)求證:△ACE≌△CBF;
(2)求∠CHE的度數(shù);
(3)如圖2,在圖1上以AC為邊長再作等邊△ACD,將HE延長至G使得HG=CH,連接HD與CG,求證:HD=AH+CH
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四川蒼溪小王家今年紅心獼猴桃喜獲豐收,采摘上市20天全部銷售完,小王對銷售情況進行跟蹤記錄,并將記錄情況繪制成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關系如圖(1)所示,紅星獼猴桃的價格z(單位:元/千克)與上市時間x(天)的函數(shù)關系式如圖(2)所示.
(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求小王家紅心獼猴桃的日銷量y與上市時間x的函數(shù)解析式;并寫出自變量的取值范圍.
(3)試比較第6天和第13天的銷售金額哪天多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由
如圖:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的過程填寫完整.
證明:∵EF∥AD
∴∠2= ( )
又∵∠1=∠2
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
又∵∠BAC=70°
∴∠AGD=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com