【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
【答案】C
【解析】分析: 由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷即可.
詳解: ①對稱軸在y軸的左側,a,b同號,
∴ab>0,
故①正確;
②由圖知:拋物線與x軸有兩個不同的交點,
則△=b4ac>0,
∴b2>4ac,
故②正確;
③∵x=-1時,y>0,
∴a-b+c>0,
而c>0,
∴a-b+2c>0,所以④錯誤;
④由圖知:當x=2時y<0,所以4a+2b+c<0,因為b=2a,所以4a+4a+c<0,即8a+c<0,故⑤正確;
故選:C.
點睛: 本題考查的是二次函數(shù)圖象與系數(shù)的關系,掌握二次函數(shù)y=ax2+bx+c系數(shù)符號與拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)的關系是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形的頂點為坐標原點,頂點在軸正半軸上,頂點、在第一象限,,,點在邊上,將四邊形沿直線翻折,使點和點分別落在這個坐標平面內的和處,且,某正比例函數(shù)圖象經過,則這個正比例函數(shù)的解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖1:已知直線與軸,軸分別交于,兩點,以為直角頂點在第一象限內做等腰Rt△.
(1)求,兩點的坐標;
(2)求所在直線的函數(shù)關系式;
(3)如圖2,直線交軸于點,在直線上取一點,使,與軸相交于點.
①求證:;
②在軸上是否存在一點,使△的面積等于△的面積?若存在,直接寫出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知DE∥AC、DF∥AB,添加下列條件后,不能判斷四邊形DEAF為菱形的是( )
A. AD平分∠BAC
B. AB=AC且BD=CD
C. AD為中線
D. EF⊥AD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖矩形ABCD中,AD=10,AB=14,點E為DC上一個動點,把△ADE沿AE折疊,當點D的對應點落在∠ABC的角平分線上時,DE的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象的頂點坐標為(3,-2),且與y軸交于(0,).
(1)求函數(shù)的解析式;
(2)若點(p,m)和點(q,n)都在該拋物線上,若p>q>5,判斷m和n的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山西特產專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經過市場調查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com