把多項(xiàng)式x4一8x2+16分解因式,所得結(jié)果是(   ) (原創(chuàng))

 A.(x-2)2 (x+2)2      B. (x-4)2 (x+4)2      C.(x一4)2         D.(x-4)4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知:如圖,在半徑為4的⊙O中,AB為直徑,以弦(非直徑)為對稱軸將折疊后與相交于點(diǎn),如果,那么的長為       

A.          B.         C.        D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


(1)如圖1,在等邊△ABC中,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),聯(lián)結(jié)AM,以AM為邊作等邊△AMN,聯(lián)結(jié)CN.求證:∠ABC=∠ACN.

【類比探究】

(2)如圖2,在等邊△ABC中,點(diǎn)M是邊BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.

【拓展延伸】

(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),聯(lián)結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.聯(lián)結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

xkb1.com

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù)的圖象對稱軸為,且過點(diǎn)B(-1,0).

此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,以點(diǎn)為圓心,以為半徑作圓,與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),二次函數(shù)的圖象經(jīng)

過點(diǎn)A、B、C,頂點(diǎn)為E.

(1)求此二次函數(shù)的表達(dá)式;

(2)設(shè)∠DBCa,∠CBEb,求sin(ab)的值;

(3)坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似.若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,直線與直線相交于點(diǎn).直線與y軸交于點(diǎn)A.一動點(diǎn)從點(diǎn)A出發(fā),先沿平行于x軸的方向運(yùn)動,到達(dá)直線上的點(diǎn)處后,改為垂直于x軸的方向運(yùn)動,到達(dá)直線上的點(diǎn)處后,再沿平行于x軸的方向運(yùn)動,到達(dá)直線上的點(diǎn)處后,又改為垂直于x軸的方向運(yùn)動,到達(dá)直線上的點(diǎn)處后,仍沿平行于x軸的方向運(yùn)動,…… 照此規(guī)律運(yùn)動,動點(diǎn)依次經(jīng)過點(diǎn),,,,,,…,,,…

則當(dāng)動點(diǎn)到達(dá)處時(shí),運(yùn)動的總路徑的長為(     )(根據(jù)2011江干區(qū)模擬改編)

A.              B.        C.         D.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知△ABC,用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不寫作法)

(1)作∠ABC的平分線BD交AC于點(diǎn)D;

(2)作線段BD的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)F。由(1)(2)可得,你發(fā)現(xiàn)了BEDF是什么四邊形?(原創(chuàng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


,則__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知⊙O的半徑為R,C、D是直徑AB的同側(cè)圓周上的兩點(diǎn),弧AC的度數(shù)為100°弧BC=2弧BD,動點(diǎn)P在線段AB上,則PC+PD的最小值為 (      )(原創(chuàng))

   A.R             B.R          C.R          D.R

查看答案和解析>>

同步練習(xí)冊答案