(2013•臺灣)附圖為正三角形ABC與正方形DEFG的重疊情形,其中D、E兩點分別在AB、BC上,且BD=BE.若AC=18,GF=6,則F點到AC的距離為何?( 。
分析:過點B作BH⊥AC于H,交GF于K,根據(jù)等邊三角形的性質(zhì)求出∠A=∠ABC=60°,然后判定△BDE是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求出∠BDE=60°,然后根據(jù)同位角相等,兩直線平行求出AC∥DE,再根據(jù)正方形的對邊平行得到DE∥GF,從而求出AC∥DE∥GF,再根據(jù)等邊三角形的邊的與高的關系表示出KH,然后根據(jù)平行線間的距離相等即可得解.
解答:解:如圖,過點B作BH⊥AC于H,交GF于K,
∵△ABC是等邊三角形,
∴∠A=∠ABC=60°,
∵BD=BE,
∴△BDE是等邊三角形,
∴∠BDE=60°,
∴∠A=∠BDE,
∴AC∥DE,
∵四邊形DEFG是正方形,GF=6,
∴DE∥GF,
∴AC∥DE∥GF,
∴KH=18×
3
2
-6×
3
2
-6=9
3
-3
3
-6=6
3
-6,
∴F點到AC的距離為6
3
-6.
故選D.
點評:本題考查了正方形的對邊平行,四條邊都相等的性質(zhì),等邊三角形的判定與性質(zhì),等邊三角形的高線等于邊長的
3
2
倍,以及平行線間的距離相等的性質(zhì),綜合題,但難度不大,熟記各圖形的性質(zhì)是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•臺灣)附圖中直線L、N分別截過∠A的兩邊,且L∥N.根據(jù)圖中標示的角,判斷下列各角的度數(shù)關系,何者正確?( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•臺灣)附圖為八個全等的正六邊形緊密排列在同一平面上的情形.根據(jù)圖中標示的各點位置,判斷△ACD與下列哪一個三角形全等?( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•臺灣)附圖(①)為一張三角形ABC紙片,P點在BC上.今將A折至P時,出現(xiàn)折線BD,其中D點在AC上,如圖(②)所示.若△ABC的面積為80,△DBC的面積為50,則BP與PC的長度比為何?( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•臺灣)附圖的長方體與下列選項中的立體圖形均是由邊長為1公分的小正方體緊密堆砌而成.若下列有一立體圖形的表面積與附圖的表面積相同,則此圖形為何?(  )

查看答案和解析>>

同步練習冊答案