【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長(zhǎng)交CF于點(diǎn)G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號(hào))
【答案】①②③④.
【解析】
試題分析:①由△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商合杭高鐵起于商丘,經(jīng)過阜陽至杭州高鐵站。預(yù)算投資818億元,設(shè)計(jì)速度350公里/小時(shí),預(yù)計(jì)2020年通車。高鐵阜陽西站(已開工建設(shè))是商合杭鐵路新建15個(gè)車站中規(guī)模最大的中間樞紐站。其中818億用科學(xué)記數(shù)法表示為( )
A. 8.18×108 B. 81.8×109 C. 8.18×1010 D. 0.818×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=(x﹣1)2+4的對(duì)稱軸是_____,頂點(diǎn)坐標(biāo)是_____,最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題①等弧所對(duì)的圓心角相等;②相等的圓心角所對(duì)的弧相等;③圓中兩條平行弦所夾的弧相等;④三點(diǎn)確定一個(gè)圓;⑤在同圓或等圓中,相等的弦所對(duì)的弧相等.其中正確的是__(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的一條對(duì)角線長(zhǎng)為6,邊AB的長(zhǎng)為方程y2﹣7y+10=0的一個(gè)根,則菱形ABCD的周長(zhǎng)為( 。
A. 8 B. 20 C. 8或20 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a<0,則點(diǎn)P(﹣a2,﹣a+1)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′在第_____象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二元一次方程x+y=5的正整數(shù)解有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com