定義:a是不為1的有理數(shù),我們把
1
1-a
稱為a的差倒數(shù).如:2的差倒數(shù)
1
1-2
=-1,-1的差倒數(shù)
1
1-(-1)
=
1
2
.已知a1=-
1
3
,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依次規(guī)律,則a2011為(  )
分析:利用已知差倒數(shù)的定義得出a2=
1
1-(-
1
3
)
=
3
4
,a3=
1
1-
3
4
=4,a4=
1
1-4
=-
1
3
,進(jìn)而得出依此規(guī)律得出結(jié)果每三個數(shù)一循環(huán),則a2011=a1,求出即可.
解答:解:∵a1=-
1
3
,a2是a1的差倒數(shù),
∴a2=
1
1-(-
1
3
)
=
3
4
,
∴a3=
1
1-
3
4
=4,
a4=
1
1-4
=-
1
3
,
依此規(guī)律得出結(jié)果每三個數(shù)一循環(huán),
2011÷3=670…1
則a2011=a1=-
1
3
;
故選:A.
點(diǎn)評:此題主要考查了數(shù)字變化規(guī)律,利用已知得出結(jié)果每三個數(shù)一循環(huán)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

對任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-單項(xiàng)式乘以多項(xiàng)式(帶解析) 題型:解答題

對任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-單項(xiàng)式乘以多項(xiàng)式(解析版) 題型:解答題

對任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

對任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

對任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時,l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

同步練習(xí)冊答案