【題目】甲、乙兩人在直線道路上同起點、同終點、同方向,分別以不同的速度勻速跑1500米,先到終點的人原地休息,已知甲先出發(fā)30秒后,乙才出發(fā),甲在跑步的整個過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間x(秒)之間的關系如圖所示,則乙到終點時,甲距終點的距離是( )米
A. 150 B. 175 C. 180 D. 225
科目:初中數學 來源: 題型:
【題目】(1) 將一副三角板中的兩塊直角三角尺的直角頂點O按如圖方式疊放在一起, ∠AOB=∠DOC=90°.
①如圖(1),若OD是∠AOB的平分線時,求∠BOD和∠AOC的度數.
②如圖(2),若OD不是∠AOB的平分線,試猜想∠AOC與∠BOD的數量關系,并說明理由.
(2)如圖(3),如果兩個角∠AOB = ∠DOC= m°(0< m <90),直接寫出∠AOC與∠BOD的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩個形狀、大小完全相同的含有、的直角三角板如圖①放置,、與直線重合,且三角板、三角板均可繞點逆時針旋轉.
圖① 圖②
(1)直接寫出的度數是______.
(2)如圖②,在圖①基礎上,若三角板的邊從處開始繞點逆時針旋轉,轉速為4.5度/秒,同時三角板的邊從處開始繞點逆時針旋轉,轉速為0.5度/秒,(當轉到與重合時,兩三角板都停止轉動),在旋轉過程中,當與重合時,求旋轉的時間是多少?
(3)在(2)的條件下,、、三條射線中,當其中一條射線平分另兩條射線的夾角時,請求出旋轉的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB∥CD.
(1)如圖1,EOF是直線AB、CD間的一條折線,猜想∠1、∠2、∠3的數量關系,并說明理由;
(2)如圖2,若點C在點D的右側,BE平分∠ABC,DE平分∠ADC,BE、DF所在直線交于點E,若∠ADC=α,∠ABC=β,求∠BED的度數(用含有α、β的式子表示);
(3)在(2)的前提下將線段BC沿DC方向平移,使得點B在點A的右側,其他條件不變,若∠ADC=α,∠ABC=β,求∠BED的度數(用含有α、β的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數的圖象與軸交于A(-3,0),B(1,0)兩點,與y軸交于點C.
(1)求這個二次函數的解析式;
(2)點P是直線AC上方的拋物線上一動點,是否存在點P,使△ACP的面積最大?若存在,求出點P的坐標;若不存在,說明理由;
(3)點Q是直線AC上方的拋物線上一動點,過點Q作QE垂直于軸,垂足為E.是否存在點Q,使以點B、Q、E為頂點的三角形與△AOC相似?若存在,直接寫出點Q的坐標;若不存在,說明理由;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.
根據以上情況,請你回答下列問題:
(1)假設小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?
(2)若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過平行四邊形ABCD對角線交點O的線段EF,分別交AD,BC于點E,F,當AE=ED時,△AOE的面積為4,則四邊形EFCD的面積是( 。
A.8B.12C.16D.32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接四邊形,點F 是CD延長線上的一點,且AD平分∠BDF,AE⊥CD于點E.
⑴ 求證:AB=AC.
⑵ 若BD=11,DE=2,求CD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com