如圖,△ABC中,∠A=500, ∠C=700,BE平分∠ABC,交AC于E,DE∥BC,求∠BED的度數(shù)。
300.

試題分析:先根據(jù)三角形的內(nèi)角和求出∠ABC的度數(shù),再由角平分線可知∠CBE的度數(shù),最后根據(jù)平行線的性質(zhì)可求∠BED的度數(shù).
試題解析:在△ABC中,∠A=500, ∠C=700
∴∠ABC=1800-(50+70)=60
又BE平分∠ABC
∴∠CBE=∠ABC=×600=300
又∵DE∥BC
∴∠BED=∠CBE=300
考點: 1.三角形的內(nèi)角和定理;2.平行線的性質(zhì);3.角平分線的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△AEC和△DFB中,∠E=∠F,點A,B,C,D在同一直線上,有如下三個關(guān)系式:①AE∥DF,②AB=CD,③CE=BF.

(1)請用其中兩個關(guān)系式作為條件,另一個作為結(jié)論,寫出你認為正確的所有命題(用序號寫出命題書寫形式:“如果?,?,那么?”);
(2)選擇(1)中你寫出的一個命題,說明它正確的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.

求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

要證明一個三角形中不可能有兩個鈍角,采用的方法是         ,應(yīng)先假設(shè)              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列長度的三根木棒首尾相接,不能做成三角形框架的是( )
A.5cm,7cm,10cmB.5cm,7cm,13cm
C.7cm,10cm,13cmD.5cm,10cm,13cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖,已知△ABC中,∠ABC=45°, F是高AD和BE的交點,CD=4,則線段DF的長度為 (  )
A.2B.4 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

三角形的下列線段中能將三角形的面積分成相等兩部分的是(  )
A.中線B.角平分線
C.高線D.中位線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知矩形ABCD,R、P分別是DC、BC上的點,E、F分別是AP、RP的中點,當(dāng)P在BC上從B向C移動而R不動時,那么下列結(jié)論成立的是(     )
A、線段EF的長逐漸增大       B、線段EF的長逐漸減小
C、線段EF的長不改變          D、線段EF的長不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AE=CF,∠DAF=∠BCE,AD=CB.

(1)問:△ADF與△CBE全等嗎?請說明理由.
(2)如果將△BEC沿CA邊方向平行移動,可有圖中3幅圖,如上面的條件不變,結(jié)論仍成立嗎?請選擇一幅圖說明理由.

查看答案和解析>>

同步練習(xí)冊答案