【題目】已知反比例函數(shù) ,下列結(jié)論中,不正確的是( )
A.圖象必經(jīng)過點(1,2)
B.y隨x的增大而增大
C.圖象在第一、三象限內(nèi)
D.若x>1,則0<y<2

【答案】B
【解析】解:A、把點(1,2)代入反比例函數(shù)y= ,得2=2,A符合題意.

B、∵k=2>0,∴在每一象限內(nèi)y隨x的增大而減小,B不正確.

C、∵k=2>0,∴圖象在第一、三象限內(nèi),C符合題意.

D、若x>1,則y<2,D符合題意.

所以答案是:B.

【考點精析】本題主要考查了反比例函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C1處;作∠BPC1的平分線交AB于點E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化歸與轉(zhuǎn)化的思想是指在研究解決數(shù)學(xué)問題時采用某種手段將問題通過變換使之轉(zhuǎn)化,進而使問題得到解決:

1)我們知道m2+n2=0可以得到m=0,n=0.如果a2+b2+2a4b+5=0,求a、b的值.

2)已知ax+2017,bx+2015,cx+2016,試問:多項式a2+b2+c2abacbc的值是否與變量x的取值有關(guān)?若有關(guān)請說明理由;若無關(guān)請求出多項式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星期天晚飯后,小紅從家里出去散步,如圖描述了她散步過程中離家的距離sm)與散步所用時間tmin)之間的函數(shù)關(guān)系,依據(jù)圖象,下面描述中符合小紅散步情景的有_____(填序號)

從家里出發(fā),到了一個公共閱報欄,看了一會兒報后,繼續(xù)向前走了一段然后回家了

小紅家距離公共閱報欄300m

從家出發(fā),一直散步(沒有停留),然后回家了

小紅本次散步共用時18min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進中原經(jīng)濟區(qū)建設(shè),促進中部地區(qū)崛起,我省汽車領(lǐng)頭企業(yè)鄭州日產(chǎn)實行技術(shù)革新,在保證原有生產(chǎn)線的同時,引進新的生產(chǎn)線,今年某月公司接到裝配汽車2400輛的訂單,定價為每輛6萬元,若只采用新的生產(chǎn)線生產(chǎn),則與原生產(chǎn)線相比可以提前8天完成訂單任務(wù),已知新的生產(chǎn)線使汽車裝配效率比以前提高了

1)求原生產(chǎn)線每天可以裝配多少輛汽車?

2)已知原生產(chǎn)線裝配一輛汽車需要成本5萬元,新生產(chǎn)線比原生產(chǎn)線每輛節(jié)省1萬元,于是公司決定兩條生產(chǎn)線同時生產(chǎn),且新生產(chǎn)線裝配的數(shù)量最多是原生產(chǎn)線裝配數(shù)量的2倍,問:如何分配兩條生產(chǎn)線才能使獲得的利潤最大,最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)a使得關(guān)于x的不等式組,有且僅有四個整數(shù)解,且使關(guān)于y的分式方程1有整數(shù)解,則所有滿足條件的整數(shù)a的值之和是( 。

A. 3B. 2C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年我市的臍橙喜獲豐收,臍橙一上市,水果店的陳老板用2400元購進一批臍橙,很快售完;陳老板又用6000元購進第二批臍橙,所購件數(shù)是第一批的2倍,但進價比第一批每件多了20元.

1)第一批臍橙每件進價多少元?

2)陳老板以每件120元的價格銷售第二批臍橙,售出60%后,為了盡快售完,決定打折促銷,要使第二批臍橙的銷售總利潤不少于480元,剩余的臍橙每件售價最低打幾折?(利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強學(xué)生環(huán)保意識,某中學(xué)組織全校2000名學(xué)生參加環(huán)保知識大賽,比賽成績均為整數(shù).從中抽取部分同學(xué)的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下列問題:

(1)所抽取的樣本容量為
(2)若抽取的學(xué)生成績用扇形圖來描述,則表示“第三組(79.5~89.5 )”的扇形的圓心角度數(shù)為多少?
(3)如果成績在80分以上(含80分)的同學(xué)可以獲獎,請估計該校有多少名同學(xué)獲獎.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)已知,在平面直角坐標(biāo)系中,AB⊥x軸于點B,點A(a,b)滿足+|b-2|=0,平移線段AB使點A與原點重合,點B的對應(yīng)點為點C.

(1)則a=____,b=____;點C坐標(biāo)為________;

(2)如下圖所示:點D(m, n)在線段BC上,求m、n滿足的關(guān)系式;

(3)如下圖所示:E是線段OB上一動點,以O(shè)B為邊作∠G=∠AOB,,交BC于點G,連CE交OG于點F,的當(dāng)點E在線段OB上運動過程中, 的值是否會發(fā)生變化?若變化請說明理由,若不變,請求出其值.

查看答案和解析>>

同步練習(xí)冊答案