【題目】如圖,在△ABC中,AB=AC,∠BAC=60°.在△ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為D,連接AD,BD.
(1)依據(jù)題意補(bǔ)全圖形;
(2)當(dāng)∠PAC等于多少度時(shí),AD∥BC?請(qǐng)說(shuō)明理由;
(3)若BD交直線AP于點(diǎn)E,連接CE,求∠CED的度數(shù);
(4)探索:線段CE,AE和BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)詳見(jiàn)解析;(2)30°;(3)120(4)
【解析】
(1)根據(jù)題意畫(huà)出圖形即可;
(2)連接CD,交AP于CD于F,因?yàn)?/span>AD∥BC,所以∠C=∠CAD,由對(duì)稱可得AC=AD,CF=FD,AF⊥CD,所以AP平分∠CAD,即可求解.
(3)AD=AC,∠DAP=∠CAP,∠DEP=∠PEC,求出AB=AC=AD,得到∠ABE=∠D,在△ABE中,得∠ABE+∠AEB+∠BAE=180°,得到∠D+∠CAE+60°+∠D+∠CAE =180°,求出∠D+∠CAE=60°,證明∠DEP=60°,即可求解;
(4)CE +AE=BE,如圖,在BE上取點(diǎn)M使ME=AE,連接AM,設(shè)∠EAC=∠DAE=x,求得∠AEB=60°,從而得到△AME為等邊三角形,根據(jù)等邊三角形的性質(zhì)和SAS即可判定△AEC≌△AMB,根據(jù)全等三角形的性質(zhì)可得CE=BM,由此即可證得CE+AE=BE.
(1)
(2)連接CD,交AP于F,
∵AB=AC,∠BAC=60°
∴等邊三角形ABC
∴∠BCA=60°
∵AD∥BC
∴∠BCA=60°=∠DAC
由對(duì)稱可得AC=AD,CF=FD,AF⊥CD
∴AP平分∠CAD
∴∠PAC=30°
(3)由對(duì)稱可得AD=AC,∠DAE=∠CAE,∠DEP=∠PEC
∵等邊三角形ABC
∴AB=AC=AD
∴∠ABE=∠D
∵△ABE
∴∠ABE+∠AEB+∠BAE=180°
∴∠ABE+∠AEB+∠BAC+∠CAE=180°
∴∠D+∠CAE+60°+∠D+∠CAE =180°
∴∠D+∠CAE=60°
∴∠DEP=60°
∴∠DEC=120°;
(4)CE+AE=BE.
在BE上取點(diǎn)M使ME=AE,連接AM,
在等邊△ABC中,
AC=AB,∠BAC=60°
由對(duì)稱可知:AC=AD,∠EAC=∠EAD,
設(shè)∠EAC=∠DAE=x.
∵AD=AC=AB,
∴∠D=60°-x
∴∠AEB=60-x+x=60°.
∴△AME為等邊三角形.
∴AM=AE,∠MAE=60°,
∴∠BAC=∠MAE=60°,
即可得∠BAM=∠CAE.
在△AMB和△AEC中,AB=AC,∠BAM=∠CAE, AM=AE,
∴△AMB≌△AEC.
∴CE=BM.
∴CE+AE=BE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】夏季來(lái)臨,商場(chǎng)準(zhǔn)備購(gòu)進(jìn)甲、乙兩種空調(diào),已知甲種空調(diào)每臺(tái)進(jìn)價(jià)比乙種空調(diào)多500元,用40000元購(gòu)進(jìn)甲種空調(diào)的數(shù)量與用30000元購(gòu)進(jìn)乙種空調(diào)的數(shù)量相同.請(qǐng)解答下列問(wèn)題:
(1)求甲、乙兩種空調(diào)每臺(tái)的進(jìn)價(jià);
(2)若甲種空調(diào)每臺(tái)售價(jià)2500元,乙種空調(diào)每臺(tái)售價(jià)1800元,商場(chǎng)計(jì)劃用不超過(guò)36000元購(gòu)進(jìn)空調(diào)共20臺(tái),且全部售出,請(qǐng)寫(xiě)出所獲利潤(rùn)y(元)與甲種空調(diào)x(臺(tái))之間的函數(shù)關(guān)系式,并求出所能獲得的最大
利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,相交兩圓的公共弦AB長(zhǎng)為120cm,它分別是一圓內(nèi)接正六邊形的邊和另一圓內(nèi)接正方形的邊,求兩圓相交弧間的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果市場(chǎng)的甲、乙兩家商店中都有批發(fā)某種水果,批發(fā)該種水果x千克時(shí),在甲、乙兩家商店所花的錢(qián)分別為y1元和y2元,已知y1、y2關(guān)于x的函數(shù)圖象分別為如圖所示的折線OAB和射線OC.
(1)當(dāng)x的取值為 時(shí),在甲乙兩家店所花錢(qián)一樣多?
(2)當(dāng)x的取值為 時(shí),在乙店批發(fā)比較便宜?
(3)如果批發(fā)30千克該水果時(shí),在甲店批發(fā)比在乙店批發(fā)便宜50元,求射線AB的表達(dá)式,并寫(xiě)出定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作在它的“方程”一章里,一次方程組是由算籌布置而成的《九章算術(shù)》中的算籌圖是豎排的,現(xiàn)在我們把它改為橫排,如圖1、圖2圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)的系數(shù)與相應(yīng)的常數(shù)項(xiàng)把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來(lái),就是類似地,圖2所示的算籌圖我們可以表述為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹(shù)狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知,點(diǎn)、在直線上,點(diǎn)、在直線上,且于.
(1)求證:;
(2)如圖2,平分交于點(diǎn),平分交于點(diǎn),求的度數(shù);
(3)如圖3,為線段上一點(diǎn),為線段上一點(diǎn),連接,為的角平分線上一點(diǎn),且,則、、之間的數(shù)量關(guān)系是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請(qǐng)結(jié)合圖象直接寫(xiě)出不等式k2x+b﹣>0的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com