【題目】如圖,∠AFD=∠1AC∥DE

(1)試說明:DF∥BC;

(2)若∠1=68°DF平分∠ADE,求∠B的度數(shù).

【答案】(1)證明見解析;(2)68°.

【解析】試題分析:1ACDE得∠1=C,而∠AFD=1,故∠AFD=C,故可得證;

2由(1)得∠EDF=68°,DF平分∠ADE,所以∠EDA=68°結(jié)合DFBC即可求出結(jié)果

試題解析:1ACDE,

∴∠1=C,

∵∠AFD=1,

∴∠AFD=C,

DFBC

2DFBC,

∴∠EDF=1=68°

DF平分∠ADE

∴∠EDA=EDF=68°,

∵∠ADE=1+B

∴∠B=ADE-1=68°+68°-68°=68°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地球上的海洋面積約為361000000km2,用科學(xué)記數(shù)法可表示為(

A.361×106km2 B.36.1×107km2C.0.361×109km2D.3.61×108km2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3a26ab5b52a4b2+a3b按字母a降冪排列_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在ABC 中,AD平分∠BAC,AEBC,∠B=40°,∠C=70°.

(1)求∠DAE的度數(shù);

(2)如圖②,若把“AEBC”變成“點(diǎn)FDA的延長線上,FEBC”,其它條件不變,求∠DFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個(gè)路燈的高度都是9m,則兩路燈之間的距離是(  。

A. 24m B. 25m C. 28m D. 30m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:8x-1=2x-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某攔水大壩的橫斷面為梯形ABCD,AE、DF為梯形的高,其中迎水坡AB的坡角α=45°,坡長AB=米,背水坡CD的坡度i=1: (i為DF與FC的比值),則背水坡CD的坡長為_______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.

1)若1表示的點(diǎn)與1表示的點(diǎn)重合,則-2表示的點(diǎn)與數(shù)____表示的點(diǎn)重合;

2)若1表示的點(diǎn)與3表示的點(diǎn)重合,則5表示的點(diǎn)與數(shù)_____表示的點(diǎn)重合;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E,FBC上,BE=CF,∠A=∠D,∠B=∠CAFDE交于點(diǎn)O

1)求證:AB=DC;

2)試判斷△OEF的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案