將拋物線向下平移3個單位,則得到的拋物線解析式為
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省龍巖市分校九年級上學(xué)期第三次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)如圖,在Rt△ABC中,∠C=90°,AC=9,BC=12,動點(diǎn)P從點(diǎn)A開始,沿邊AC向點(diǎn)C以每秒1個單位長度的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始,沿邊CB向點(diǎn)B以每秒2個單位長度的速度運(yùn)動,過點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連結(jié)PQ.點(diǎn)P,Q分別從點(diǎn)A,C同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時,另兩個點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= ,PD= ;
(2)是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由;
(3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運(yùn)動),使四邊形PDBQ在某一時刻為菱形,求點(diǎn)Q的速度;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省福安市小片區(qū)九年級上學(xué)期半期考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,為了測量池塘的寬DE,在岸邊找到點(diǎn)C,測得CD=30 m,在DC的延長線上找一點(diǎn)A,測得AC=5 m,過點(diǎn)A作AB∥DE交EC的延長線于B,測出AB=6 m,則池塘的寬DE為( )
A.25 m B.30 m C.36 m D.40 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市平谷區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:計算題
計算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市平谷區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
若關(guān)于的二次函數(shù)的圖象與x軸僅有一個公共點(diǎn),則k的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市九年級上學(xué)期期中檢測數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在學(xué)習(xí)中遇到這樣一個問題:若1≤x≤m,求二次函數(shù)的最大值.他畫圖研究后發(fā)現(xiàn),和時的函數(shù)值相等,于是他認(rèn)為需要對進(jìn)行分類討論.他的解答過程如下:
∵二次函數(shù)的對稱軸為直線,
∴由對稱性可知,和時的函數(shù)值相等.
∴若1≤m<5,則時,的最大值為2;
若m≥5,則時,的最大值為.
請你參考小明的思路,解答下列問題:
(1)當(dāng)≤x≤4時,二次函數(shù)的最大值為_______;
(2)若p≤x≤2,求二次函數(shù)的最大值;
(3)若t≤x≤t+2時,二次函數(shù)的最大值為31,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市九年級上學(xué)期期中檢測數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的[圖象交于A、B兩點(diǎn).
(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年安徽省淮北市五校九年級上學(xué)期第三次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若BC2=AD•AB,求證:四邊形ADCE為正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河北沙河二十冶第3中學(xué)八年級上學(xué)期主科抽測數(shù)學(xué)卷(解析版) 題型:選擇題
等腰三角形的周長為13cm,其中一邊長為3cm,則該等腰三角形的底邊長
為( )
A、7cm B、3cm C、7cm或3cm D、5cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com