如圖,P是⊙O的半徑OA上的一點,D在⊙O上,且PD=PO.過點D作⊙O的切線交OA的延長線于點C,延長交⊙O于K,連接KO,OD.
(1)證明:PC=PD;
(2)若該圓半徑為5,CDKO,請求出OC的長.
(1)證明:如圖,∵PD=PO,
∴∠1=∠2;
∵CD是⊙O的切線,
∴CD⊥OD.(2分)
∴∠3+∠1=90°;
又∵∠CDP+∠2=90°,
∴∠3=∠CDP.(3分)
∴PC=PD.(4分)

(2)∵CDKO,有∠3=∠POK,
由(1)得,CP=PD=PO,又∠CPD=∠KPO,
∴△CPD≌△OPK
∴CD=OK=5;
在Rt△COD中,OC=
CD2+OD2
=5
2
.(8分)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=6
2
,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA,PB分別切⊙O于點A和點B,C是
AB
上任一點,過C的切線分別交PA,PB于D,E.若⊙O的半徑為6,PO=10,則△PDE的周長是( 。
A.16B.14C.12D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA,PB分別切⊙O于A、B,∠APB=50°,BD是⊙O的直徑,求∠ABD的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PD切⊙O于A,
AB
=2
BC
,∠CAP=120°,則∠DAB=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,∠PAQ是直角,⊙O與AP相切于點T,與AQ交于B、C兩點.
(1)BT是否平分∠OBA,說明你的理由;
(2)若已知AT=4,弦BC=6,試求⊙O的半徑R.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個公共點,則R的取值范圍是(  )
A.R=4.8B.R=4.8或6≤R≤8
C.R=4.8或6≤R<8D.R=4.8或6<R≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的半徑為6cm,經(jīng)過⊙O上一點C作⊙O的切線交半徑OA的延長于點B,作∠ACO的平分線交⊙O于點D,交OA于點F,延長DA交BC于點E.
(1)求證:ACOD;
(2)如果DE⊥BC,求
AC
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知AB為⊙O的直徑,CB切⊙O于B,CD切⊙O于D,交BA的延長線于E,若AB=3,ED=2,則BC的長為( 。
A.2B.3C.3.5D.4
⌒⌒

查看答案和解析>>

同步練習冊答案