【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷.卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決此問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)n是8的整數(shù)倍時,均可采用此方法求解.如圖,是解決這類問題的程序框圖,若輸入n=40,則輸出的結(jié)果為

【答案】121
【解析】解:模擬程序的運(yùn)行,可得 n=40,S=40
執(zhí)行循環(huán)體,n=32,S=72
不滿足條件n=0,執(zhí)行循環(huán)體,n=24,S=96
不滿足條件n=0,執(zhí)行循環(huán)體,n=16,S=112
不滿足條件n=0,執(zhí)行循環(huán)體,n=8,S=120
不滿足條件n=0,執(zhí)行循環(huán)體,n=0,S=120
滿足條件n=0,可得S=121,退出循環(huán),輸出S的值為121.
故答案為:121.
模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的n,S的值,當(dāng)n=0時,滿足條件退出循環(huán),即可得到輸出的S值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜邊AB上取一點(diǎn)D,過點(diǎn)D作DE//BC,交AC于點(diǎn)E.現(xiàn)將△ADE繞點(diǎn)A旋轉(zhuǎn)一定角度到如圖2所示的位置(點(diǎn)D在△ABC的內(nèi)部),使得∠ABD+∠ACD=90°.

(1)①求證:△ABD∽△ACE;
②若CD=1,BD= ,求AD的長;
(2)如圖3,將原題中的條件“AC=BC”去掉,其它條件
不變,設(shè) ,若CD=1,BD=2,AD=3,求k的值;

(3)如圖4,將原題中的條件“∠ACB=90°”去掉,其它條件不變,若 ,設(shè)CD=m , BD=n , AD=p , 試探究mn , p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時,直達(dá);動車速度為200千米/小時,行駛180千米后,中途要?啃熘10分鐘,若動車先出發(fā)半小時,兩車與甲地之間的距離y(千米)與動車行駛時間x(小時)之間的函數(shù)圖象為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校設(shè)計(jì)了一個實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作.規(guī)定:至少正確完成其中2題獲得學(xué)分2分,便可通過考察.已知6道備選題中考生甲有4題能正確完成:考生乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.求: (Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;
(Ⅱ)請你判斷兩考生的實(shí)驗(yàn)操作學(xué)科能力,比較他們能通過本次考查的可能性大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=xex﹣ax(a∈R,a為常數(shù)),e為自然對數(shù)的底數(shù). (Ⅰ)當(dāng)f(x)>0時,求實(shí)數(shù)x的取值范圍;
(Ⅱ)當(dāng)a=2時,求使得f(x)+k>0成立的最小正整數(shù)k.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺大型機(jī)器,在一個月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時需1名維修工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為 . (Ⅰ)若出現(xiàn)故障的機(jī)器臺數(shù)為x,求x的分布列;
(Ⅱ)該廠至少有多少名維修工人才能保證每臺機(jī)器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率不少于90%?
(Ⅲ)已知一名維修工人每月只有維修1臺機(jī)器的能力,每月需支付給每位維修工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名維修工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x+3|+|2x﹣1|. (Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2x﹣2m+1=0的兩實(shí)數(shù)根之積為負(fù),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案