【題目】老師隨機抽查了本學期學生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.

(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);

(2)在所抽查的學生中隨機選一人談讀書感想,求選中讀書超過5冊的學生的概率;

(3)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了   人.

【答案】(1)條形圖中被遮蓋的數(shù)為9,冊數(shù)的中位數(shù)為5;(2)選中讀書超過5冊的學生的概率為;(3)3

【解析】1)用讀書為6冊的人數(shù)除以它所占的百分比得到調查的總人數(shù),再用總人數(shù)分別減去讀書為4冊、6冊和7冊的人數(shù)得到讀書5冊的人數(shù),然后根據(jù)中位數(shù)的定義求冊數(shù)的中位數(shù);

(2)用讀書為6冊和7冊的人數(shù)和除以總人數(shù)得到選中讀書超過5冊的學生的概率;

(3)根據(jù)中位數(shù)的定義可判斷總人數(shù)不能超過27,從而得到最多補查的人數(shù).

1)抽查的學生總數(shù)為6÷25%=24(人),

讀書為5冊的學生數(shù)為24﹣5﹣6﹣4=9(人),

所以條形圖中被遮蓋的數(shù)為9,冊數(shù)的中位數(shù)為5;

(2)選中讀書超過5冊的學生的概率=;

(3)因為4冊和5冊的人數(shù)和為14,中位數(shù)沒改變,所以總人數(shù)不能超過27,即最多補查了3人,

故答案為:3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bxa0)過點E8,0),矩形ABCD的邊AB在線段OE上(點A在點B的左側),點CD在拋物線上,∠BAD的平分線AMBC于點M,點NCD的中點,已知OA2,且OAAD13.

1)求拋物線的解析式;

2F、G分別為x軸,y軸上的動點,順次連接M、NG、F構成四邊形MNGF,求四邊形MNGF周長的最小值;

3)在x軸下方且在拋物線上是否存在點P,使△ODPOD邊上的高為?若存在,求出點P的坐標;若不存在,請說明理由;

4)矩形ABCD不動,將拋物線向右平移,當平移后的拋物線與矩形的邊有兩個交點K、L,且直線KL平分矩形的面積時,求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》中記載:今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?譯文:今有甲乙二人,不知其錢包里有多少錢.若乙把自己一半的錢給甲,則甲的錢數(shù)為50錢;而甲把自己的錢給乙,則乙的錢數(shù)也為50錢.問甲、乙各有多少錢?設甲、乙原有錢數(shù)分別為、,下列所列方程組正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵市民節(jié)約用水,某市自來水公司按分段收費標準收費,右圖反映的是每月收水費y(元)與用水量x(噸)之間的函數(shù)關系

1)小紅家五月份用水8噸,應交水費_____元;

2)按上述分段收費標準,小紅家三、四月份分別交水費36元和19.8元,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察猜想:

1)如圖1,在RtABC中,∠ACB90°,∠BAC30°,點D與點C重合,點E在斜邊AB上,連接DE,且DEAE,將線段DE繞點D順時針旋轉90°得到線段DF,連接EF,則______,sinADE________,

探究證明:

2)在(1)中,如果將點D沿CA方向移動,使CDAC,其余條件不變,如圖2,上述結論是否保持不變?若改變,請求出具體數(shù)值:若不變,請說明理由.

拓展延伸

3)如圖3,在△ABC中,∠ACB90°,∠CABa,點D在邊AC的延長線上,EAB上任意一點,連接DEEDnAE,將線段DE繞著點D順時針旋轉90°至點F,連接EF.求sinADE的值分別是多少?(請用含有n,a的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(

A.同一平面內,過一點有且只有一條直線與已知直線平行

B.三張分別畫有菱形、等邊三角形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形卡片的概率是

C.一組對邊平行,一組對邊相等的四邊形是平行四邊形

D.時,關于的方程有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于兩點,與軸交于,直線軸交于點.

(1)求拋物線的函數(shù)表達式;

(2)設直線與拋物線的對稱軸的交點為是拋物線上位于對稱軸右側的一點,若,且的面積相等,求點的坐標;

(3)若在軸上有且只有一點,使,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,點,,依次是邊的四等分點,點,依次是邊的四等分點,分別以,為邊向下剪三個寬相等的矩形,如圖所示.若圖中空白部分的面積和為,則圖中陰影部分的面積和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx+ca<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結論:

①4a+2b<0;

②﹣1≤a;

對于任意實數(shù)ma+bam2+bm總成立;

關于x的方程ax2+bx+cn﹣1有兩個不相等的實數(shù)根.

其中結論正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案