(2009•臨夏州)如圖1,拋物線y=x2-2x+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3).[圖2、圖3為解答備用圖]

(1)k=______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)設(shè)拋物線y=x2-2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)在拋物線y=x2-2x+k上求點(diǎn)Q,使△BCQ是以BC為直角邊的直角三角形.
【答案】分析:(1)把C(0,-3)代入拋物線解析式可得k值,令y=0,可得A,B兩點(diǎn)的橫坐標(biāo);
(2)過M點(diǎn)作x軸的垂線,把四邊形ABMC分割成兩個(gè)直角三角形和一個(gè)直角梯形,求它們的面積和;
(3)設(shè)D(m,m2-2m-3),連接OD,把四邊形ABDC的面積分成△AOC,△DOC,△DOB的面積和,求表達(dá)式的最大值;(4)有兩種可能:B為直角頂點(diǎn)、C為直角頂點(diǎn),要充分認(rèn)識(shí)△OBC的特殊性,是等腰直角三角形,可以通過解直角三角形求出相關(guān)線段的長(zhǎng)度.
解答:解:(1)把C(0,-3)代入拋物線解析式y(tǒng)=x2-2x+k中得k=-3
∴y=x2-2x-3,
令y=0,
即x2-2x-3=0,
解得x1=-1,x2=3.
∴A(-1,0),B(3,0).

(2)∵y=x2-2x-3=(x-1)2-4,
∴拋物線的頂點(diǎn)為M(1,-4),連接OM.
則△AOC的面積=,△MOC的面積=
△MOB的面積=6,
∴四邊形ABMC的面積=△AOC的面積+△MOC的面積+△MOB的面積=9.
說明:也可過點(diǎn)M作拋物線的對(duì)稱軸,將四邊形ABMC的面
積轉(zhuǎn)化為求1個(gè)梯形與2個(gè)直角三角形面積的和.

(3)如圖(2),設(shè)D(m,m2-2m-3),連接OD.
則0<m<3,m2-2m-3<0
且△AOC的面積=,△DOC的面積=m,
△DOB的面積=-(m2-2m-3),
∴四邊形ABDC的面積=△AOC的面積+△DOC的面積+△DOB的面積
=-m2+m+6
=-(m-2+
∴存在點(diǎn)D(,),使四邊形ABDC的面積最大為

(4)有兩種情況:
如圖(3),過點(diǎn)B作BQ1⊥BC,交拋物線于點(diǎn)Q1、交y軸于點(diǎn)E,連接Q1C.
∵∠CBO=45°,
∴∠EBO=45°,BO=OE=3.
∴點(diǎn)E的坐標(biāo)為(0,3).
∴直線BE的解析式為y=-x+3.

解得
∴點(diǎn)Q1的坐標(biāo)為(-2,5).
如圖(4),過點(diǎn)C作CF⊥CB,交拋物線于點(diǎn)Q2、交x軸于點(diǎn)F,連接BQ2
∵∠CBO=45°,
∴∠CFB=45°,OF=OC=3.
∴點(diǎn)F的坐標(biāo)為(-3,0).
∴直線CF的解析式為y=-x-3.

解得
∴點(diǎn)Q2的坐標(biāo)為(1,-4).
綜上,在拋物線上存在點(diǎn)Q1(-2,5)、Q2(1,-4),使△BCQ1、△BCQ2是以BC為直角邊的直角三角形.

說明:如圖(4),點(diǎn)Q2即拋物線頂點(diǎn)M,直接證明△BCM為直角三角形同樣可以.
點(diǎn)評(píng):本題考查了拋物線解析式的求法,運(yùn)用解析式解決面積問題,及求構(gòu)成直角三角形的條件等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•臨夏州)如圖1,拋物線y=x2-2x+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3).[圖2、圖3為解答備用圖]

(1)k=______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)設(shè)拋物線y=x2-2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)在拋物線y=x2-2x+k上求點(diǎn)Q,使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•臨夏州)鞋子的“鞋碼”和鞋長(zhǎng)(cm)存在一種換算關(guān)系,下表是幾組“鞋碼”與鞋長(zhǎng)換算的對(duì)應(yīng)數(shù)值:
(注:“鞋碼”是表示鞋子大小的一種號(hào)碼)
 鞋長(zhǎng)(cm) 16 19 21 24
 鞋碼(號(hào)) 22 28 32 38
(1)設(shè)鞋長(zhǎng)為x,“鞋碼”為y,試判斷點(diǎn)(x,y)在你學(xué)過的哪種函數(shù)的圖象上;
(2)求x、y之間的函數(shù)關(guān)系式;
(3)如果某人穿44號(hào)“鞋碼”的鞋,那么他的鞋長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省河源市數(shù)學(xué)總復(fù)習(xí)測(cè)試卷(15) 綜合五(解析版) 題型:解答題

(2009•臨夏州)鞋子的“鞋碼”和鞋長(zhǎng)(cm)存在一種換算關(guān)系,下表是幾組“鞋碼”與鞋長(zhǎng)換算的對(duì)應(yīng)數(shù)值:
(注:“鞋碼”是表示鞋子大小的一種號(hào)碼)
 鞋長(zhǎng)(cm) 16 19 21 24
 鞋碼(號(hào)) 22 28 32 38
(1)設(shè)鞋長(zhǎng)為x,“鞋碼”為y,試判斷點(diǎn)(x,y)在你學(xué)過的哪種函數(shù)的圖象上;
(2)求x、y之間的函數(shù)關(guān)系式;
(3)如果某人穿44號(hào)“鞋碼”的鞋,那么他的鞋長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年甘肅省定西市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•臨夏州)鞋子的“鞋碼”和鞋長(zhǎng)(cm)存在一種換算關(guān)系,下表是幾組“鞋碼”與鞋長(zhǎng)換算的對(duì)應(yīng)數(shù)值:
(注:“鞋碼”是表示鞋子大小的一種號(hào)碼)
 鞋長(zhǎng)(cm) 16 19 21 24
 鞋碼(號(hào)) 22 28 32 38
(1)設(shè)鞋長(zhǎng)為x,“鞋碼”為y,試判斷點(diǎn)(x,y)在你學(xué)過的哪種函數(shù)的圖象上;
(2)求x、y之間的函數(shù)關(guān)系式;
(3)如果某人穿44號(hào)“鞋碼”的鞋,那么他的鞋長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年甘肅省定西市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•臨夏州)拋物線y=-x2+bx+c的部分圖象如圖所示,請(qǐng)寫出與其關(guān)系式,圖象相關(guān)的2個(gè)正確結(jié)論:   
(對(duì)稱軸方程,圖象與x正半軸,y軸交點(diǎn)坐標(biāo)例外).

查看答案和解析>>

同步練習(xí)冊(cè)答案