【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數(shù)是(
A.70°
B.65°
C.60°
D.55°

【答案】B
【解析】解:∵Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A′B′C, ∴AC=A′C,
∴△ACA′是等腰直角三角形,
∴∠CAA′=45°,
∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
由旋轉(zhuǎn)的性質(zhì)得∠B=∠A′B′C=65°.
故選:B.
根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA′=45°,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠A′B′C,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠B=∠A′B′C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在做課本“目標(biāo)與評(píng)定”中的一道題:如圖1,直線a,b所成的角跑到畫(huà)板外面去了,你有什么辦法量出這兩條直線所成的角的度數(shù)?小明的做法是:如圖2,畫(huà)PC∥a,量出直線b與PC的夾角度數(shù),即直線a,b所成角的度數(shù).
(1)請(qǐng)寫(xiě)出這種做法的理由;
(2)小明在此基礎(chǔ)上又進(jìn)行了如下操作和探究(如圖3):①以P為圓心,任意長(zhǎng)為半徑畫(huà)圓弧,分別交直線b,PC于點(diǎn)A,D;②連結(jié)AD并延長(zhǎng)交直線a于點(diǎn)B,請(qǐng)寫(xiě)出圖3中所有與∠PAB相等的角,并說(shuō)明理由;
(3)請(qǐng)?jiān)趫D3畫(huà)板內(nèi)作出“直線a,b所成的跑到畫(huà)板外面去的角”的平分線(畫(huà)板內(nèi)的部分),只要求作出圖形,并保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC面積為1,第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB、B1C=2BC,C1A=2CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1、C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=2B1C1,C2A1=2C1A1 ,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,經(jīng)過(guò)2015次操作后△A2015B2015C2015的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分別繞直線AB,CD旋轉(zhuǎn)一周,所得幾何體的表面積分別為S1 , S2 , 則|S1﹣S2|=(平方單位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某公司有三個(gè)住宅區(qū)可看作一點(diǎn),A,B,C各區(qū)分別住有職工30人、15人、10,且這三個(gè)住宅區(qū)在一條大道上(A,B,C三點(diǎn)共線),已知AB=100,BC=200.為了方便職工上下班,該公司的接送車(chē)打算在此間只設(shè)一個(gè)停靠點(diǎn),為使所有的人步行到?奎c(diǎn)的路程之和最小,那么該?奎c(diǎn)的位置應(yīng)設(shè)在(  )

A. 點(diǎn)A B. 點(diǎn)B

C. A,B之間 D. B,C之間

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人駕車(chē)從鄉(xiāng)村進(jìn)城.各時(shí)間段的行駛速度如圖所示.當(dāng)時(shí),其行駛路程與時(shí)間之間的函數(shù)表達(dá)式是________,當(dāng)時(shí),其行駛路程與時(shí)間之間的函數(shù)表達(dá)式是________,當(dāng)時(shí),其行駛路程與時(shí)間之間的函數(shù)表達(dá)式是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對(duì)角線OB的中點(diǎn),點(diǎn)E(4,n)在邊AB上,反比例函數(shù) (k≠0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D、E,且tan∠BOA=

(1)求邊AB的長(zhǎng);
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求線段OG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),EC交對(duì)角線于點(diǎn)F,若SDEC=9,則SBCF=(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)閱讀下面例題,解答問(wèn)題:

例題:已知二次三項(xiàng)式x24xm有一個(gè)因式是(x3),求另一個(gè)因式以及m的值。

解:設(shè)另一個(gè)因式為(xn),得 x24xm=(x3)(xn

x24xmx2+(n3x3n

解得:n=-7, m=-21 另一個(gè)因式為(x7),m的值為-21

問(wèn)題:仿照以上方法解答下面問(wèn)題:

已知二次三項(xiàng)式2x23xk有一個(gè)因式是(2x5),求另一個(gè)因式以及k的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案