【題目】一位運(yùn)動(dòng)員在距籃下4m處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離是2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式.
(2)該運(yùn)動(dòng)員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問(wèn):球出手時(shí),他距離地面的高度是多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程
(1)若這個(gè)方程有實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線y=(k>0)的圖象經(jīng)過(guò)Rt△OAB的斜邊OB的中點(diǎn)D,與直角邊AB相交于點(diǎn)C.當(dāng)BC=OA=6時(shí),k=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店銷(xiāo)售單價(jià)分別為元/筒、元/筒的甲、乙兩種羽毛球.根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過(guò)元購(gòu)進(jìn)甲、乙兩種羽毛球共簡(jiǎn).且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的.已知甲、乙兩種羽毛球的進(jìn)價(jià)分別為元/筒、元/筒。若設(shè)購(gòu)進(jìn)甲種羽毛球簡(jiǎn).
(1)該網(wǎng)店共有幾種進(jìn)貨方案?
(2)若所購(gòu)進(jìn)羽毛球均可全部售出,求該網(wǎng)店所獲利潤(rùn)(元)與甲種羽毛球進(jìn)貨量(簡(jiǎn))之間的函數(shù)關(guān)系式,并求利潤(rùn)的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=90°,AD∥BC,以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,與射線AD相交于點(diǎn)E,連接BE,過(guò)點(diǎn)C作CF⊥BE,垂足為F.若AB=6,BC=10,則EF的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐﹣四邊形旋轉(zhuǎn)中的數(shù)學(xué)
“智慧”數(shù)學(xué)小組在課外數(shù)學(xué)活動(dòng)中研究了一個(gè)問(wèn)題,請(qǐng)幫他們解答.
任務(wù)一:如圖1,在矩形ABCD中,AB=6,AD=8,E,F(xiàn)分別為AB,AD邊的中點(diǎn),四邊形AEGF為矩形,連接CG.
(1)請(qǐng)直接寫(xiě)出CG的長(zhǎng)是______.
(2)如圖2,當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)(比如順時(shí)針旋轉(zhuǎn))至點(diǎn)G落在邊AB上時(shí),請(qǐng)計(jì)算DF與CG的長(zhǎng),通過(guò)計(jì)算,試猜想DF與CG之間的數(shù)量關(guān)系.
(3)當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)至如圖3的位置時(shí),(2)中DF與CG之間的數(shù)量關(guān)系是否還成立?請(qǐng)說(shuō)明理由.
任務(wù)二:“智慧”數(shù)學(xué)小組對(duì)圖形的旋轉(zhuǎn)進(jìn)行了拓展研究,如圖4,在ABCD中,∠B=60°,AB=6,AD=8,E,F(xiàn)分別為AB,AD邊的中點(diǎn),四邊形AEGF為平行四邊形,連接CG.“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著特定的數(shù)量關(guān)系.
(4)如圖5,當(dāng)AEGF繞點(diǎn)A旋轉(zhuǎn)(比如順時(shí)針旋轉(zhuǎn)),其他條件不變時(shí),“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著這一特定的數(shù)量關(guān)系.請(qǐng)你直接寫(xiě)出這個(gè)特定的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列方程的特征及其解的特點(diǎn).
①x+=-3的解為x1=-1,x2=-2;
②x+=-5的解為x1=-2,x2=-3;
③x+=-7的解為x1=-3,x2=-4.
解答下列問(wèn)題:
(1)請(qǐng)你寫(xiě)出一個(gè)符合上述特征的方程為________,其解為________;
(2)根據(jù)這類(lèi)方程的特征,寫(xiě)出第n個(gè)方程為________,其解為________;
(3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程x+=-2(n+2)(其中n為正整數(shù))的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC的延長(zhǎng)線與AD的延長(zhǎng)線交于點(diǎn)E,且DC=DE.
(1)求證:∠A=∠AEB;
(2)連接OE,交CD于點(diǎn)F,OE⊥CD,求證:△ABE是等邊三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com