已知函數(shù)f(x)=
1
3x2+2x+1
+
3x2-1
+
3x2-2x+1
,則f(1)+f(3)+…f(2k-1)+…+f(999)的值為
 
分析:解答之前觀察函數(shù)表達(dá)式的結(jié)構(gòu)形式,把f(x)=
1
3x2+2x+1
+
3x2-1
+
3x2-2x+1

=
3x+1
-
3x-1
(
3x+1
-
3x-1
)(
3(x+1) 2
+
3x+1
3x-1
+
3(x-1) 2
,
進(jìn)而求出f(x)=
3x+1
-
3x-1
(x+1)-(x-1)
=
1
2
(
3x+1
-
3x-1
)
,然后進(jìn)行運(yùn)算求值.
解答:解:∵f(x)=
3x+1
-
3x-1
(x+1)-(x-1)
=
1
2
(
3x+1
-
3x-1
)
,
f(1)+f(3)+…+f(999)=
1
2
[(
32
-0)+(
34
-
32
)+…+(
31000
-
3998
)]

=
1
2
×10=5
,
故答案為5.
點(diǎn)評:本題主要考查立方根的知識點(diǎn),解答本題的突破口是把f(x)轉(zhuǎn)化成f(x)=
1
2
(
3x+1
-
3x-1
)
的形式,本題不是很難.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=4x-3,當(dāng)
 
<x<
 
時(shí),函數(shù)圖象在第四象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知函數(shù)y=(m-3)x-4中,y值隨x的增加而減小,則m的取值范圍為
m<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、已知函數(shù)y=x+m與y=mx-1,當(dāng)x=3時(shí),y值相等,那么m的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知函數(shù)y=(2k+6)x-k是關(guān)于x的一次函數(shù),且y隨x的增大而減小,則這個(gè)函數(shù)的圖象經(jīng)過的象限是  
一、二、四

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=-3(x+4)2-1,當(dāng)x=
-4
-4
時(shí),函數(shù)取得最大值為
-1
-1

查看答案和解析>>

同步練習(xí)冊答案