【題目】如圖,在矩形ABCD中,AB=8,AD=6,點M為對角線AC上的一個動點(不與端點A,C重合),過點M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為(

A. 6 B. 12 C. 18 D. 24

【答案】B

【解析】

根據(jù)矩形的性質和判定可得四邊形EBFM是矩形,根據(jù)相似三角形的判定和性質可得DF=EM=x,DE=FM=y,得到 根據(jù)矩形的面積公式得到四邊形EMFD面積

再根據(jù)函數(shù)的最值問題即可求解.

∵四邊形ABCD是矩形,

MEAD,MFDC,

∴四邊形EBFM是矩形;

DF=EM,DE=FM,FMAD,MECD,

AEMADC,

DF=EM=x,DE=FM=y

四邊形EMFD面積

x=4時,四邊形EMFD面積的最大值為12.

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,矩形OABC的長OA=,寬OC=1,將△AOC沿AC翻折得△APC

1)求∠PCB的度數(shù);

2)若P,A兩點在拋物線y=﹣x2+bx+c上,求b,c的值,并說明點C在此拋物線上;

3)(2)中的拋物線與矩形OABCCB相交于點D,與x軸相交于另外一點E,若點Mx軸上的點,Ny軸上的點,以點E、MD、N為頂點的四邊形是平行四邊形,試求點M、N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.

(1)當t為何值時,AD=AB,并求出此時DE的長度;

(2)當△DEG與△ACB相似時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方格紙中每個小正方形的邊長都是單位1,OAB在平面直角坐標系中的位置如圖所示.解答問題:

(1)請按要求對ABO作如下變換:

OAB向下平移2個單位,再向左平移3個單位得到O1A1B1;

以點O為位似中心,位似比為2:1,將ABC在位似中心的異側進行放大得到OA2B2

(2)寫出點A1,A2的坐標: , ;

(3)OA2B2的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-x+3x軸、y軸分別交于A,B兩點,拋物線y=-x2+bx+c經過B點,且與x軸交于C,D兩點(點C在左側),且C(-3,0).

(1)求拋物線的解析式;

(2)平移直線AB,使得平移后的直線與拋物線分別交于點D,E,與y軸交于點F,連接CE,CF,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點F在邊AC上,DFBE相交于點G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點M,N的坐標分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是(  )

A. a≤﹣1≤a< B. ≤a<

C. a≤a> D. a≤﹣1a≥

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個四邊形被一條對角線分割成兩個三角形,如果被分割的兩個三角形相似,我們把這條對角線稱為該四邊形的為相似對角線。

(1)如圖1,正方形ABCD的邊長為4,EAD的中點,AF=1,連結CE,CF,求證:EF為四邊形AECF的相似對角線。

(2)在四邊形ABCD,BAD=120°,AB=3,AC=,AC平分∠BAD,且AC是四邊形ABCD的相似對角線,求BD的長。

(3)如圖2,在矩形ABCD,AB=6,BC=4,E是線段AB(不取端點A,B)上的一個動點,F是射線AD上的一個動點,EF是四邊形AECF的相似對角線,BE的長.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,RtABC的三個頂點A(-2,2),B(0,5),C(0,2).

(1)ABC以點C為旋轉中心旋轉180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的A2B2C2的圖形.

(3)若將A1B1C繞某一點旋轉可得到A2B2C2,請直接寫出旋轉中心的坐標.

查看答案和解析>>

同步練習冊答案