【題目】如圖,拋物線y1=a(x+2)2-3與y2= (x-3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);②a=1;③當(dāng)x=0時(shí),y2-y1=4;④2AB=3AC;其中正確結(jié)論是( 。
A.①②
B.②③
C.③④
D.①④
【答案】D
【解析】①∵拋物線y2= (x-3)2+1開口向上,頂點(diǎn)坐標(biāo)在x軸的上方,∴無論x取何值,y2的值總是正數(shù),故本小題正確;
②把A(1,3)代入,拋物線y1=a(x+2)2-3得,3=a(1+2)2-3,解得a=
, 故本小題錯(cuò)誤;
③由兩函數(shù)圖象可知,拋物線y1=a(x+2)2-3解析式為y1= (x+2)2-3,當(dāng)x=0時(shí),y1=
(0+2)2-3=- ,y2= (0-3)2+1= ,故y2-y1=- - =- ,故本小題錯(cuò)誤;
④∵物線y1=a(x+2)2-3與y2= (x-3)2+1交于點(diǎn)A(1,3),
∴y1的對稱軸為x=-2,y2的對稱軸為x=3,
∴B(-5,3),C(5,3)
∴AB=6,AC=4,
∴2AB=3AC,故本小題正確.
故選D.
【考點(diǎn)精析】利用二次函數(shù)的圖象對題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,將△COD繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)得到△C1OD1 , 旋轉(zhuǎn)角為θ(0°<θ<90°),連接AC1、BD1 , AC1與BD1交于點(diǎn)P.
(1)如圖1,若四邊形ABCD是正方形.
①求證:△AOC1≌△BOD1 .
②請直接寫出AC1 與BD1的位置關(guān)系.
(2)如圖2,若四邊形ABCD是菱形,AC=5,BD=7,設(shè)AC1=kBD1 . 判斷AC1與BD1的位置關(guān)系,說明理由,并求出k的值.
(3)如圖3,若四邊形ABCD是平行四邊形,AC=5,BD=10,連接DD1 , 設(shè)AC1=kBD1 . 請直接寫出k的值和AC12+(kDD1)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對于一個(gè)圖形,通過不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學(xué)等式:_____________________;寫出由圖3所表示的數(shù)學(xué)等式:_____________________;
(2)利用上述結(jié)論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn), 的圓心坐標(biāo)為,半徑為函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)P為線段AB上一動(dòng)點(diǎn).
連接CO,求證: ;
若是等腰三角形,求點(diǎn)P的坐標(biāo);
當(dāng)直線PO與相切時(shí),求的度數(shù);當(dāng)直線PO與相交時(shí),設(shè)交點(diǎn)為E、F,點(diǎn)M為線段EF的中點(diǎn),令,求s與t之間的函數(shù)關(guān)系,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(-2,y1),B(1,y2),C(2,y3)是拋物線y=-(x+1)2+a上的三點(diǎn),則y1 , y2 , y3的大小關(guān)系為( )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y2>y1
D.y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一勞動(dòng)節(jié)”,某超市開展促銷活動(dòng),決定對A,B兩種商品進(jìn)行打折出售.打折前,買6件A商品和3件B商品需要108元,買3件A商品和4件B商品需要94元.問:打折后,若買5件A商品和4件B商品僅需86元,比打折前節(jié)省了多少元錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m2+m) .
(1)當(dāng)函數(shù)是二次函數(shù)時(shí),求m的值;
(2)當(dāng)函數(shù)是一次函數(shù)時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸的一個(gè)交點(diǎn)A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點(diǎn)坐標(biāo)是( 。
A.(-3,0)
B.(-2,0)
C.x=-3
D.x=-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在正是草莓熱銷的季節(jié),某水果零售商店分兩批次從批發(fā)市場共購進(jìn)草莓40箱,已知第一、二次進(jìn)貨價(jià)分別為每箱50元、40元,且第二次比第一次多付款700元.
(1)設(shè)第一、二次購進(jìn)草莓的箱數(shù)分別為a箱、b箱,求a,b的值;
(2)若商店對這40箱草莓先按每箱60元銷售了x箱,其余的按每箱35元全部售完.
①求商店銷售完全部草莓所獲利潤y(元)與x(箱)之間的函數(shù)關(guān)系式;
②當(dāng)x的值至少為多少時(shí),商店才不會虧本.(注:按整箱出售,利潤=銷售總收入-進(jìn)貨總成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com