【題目】如圖,在 Rt△POQ中,OP=OQ=4,M PQ中點(diǎn),把一個(gè)三角尺頂點(diǎn)放在點(diǎn)M處,以M為旋轉(zhuǎn)心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與 Rt△POQ的兩直角邊分別交于點(diǎn)A、B.

(1)求證:MA=MB;

(2)探究:在旋轉(zhuǎn)三角尺的過(guò)程中,四邊形AOBM的面積是否發(fā)生變化?為什么?

(3)連接 AB,探究:在旋轉(zhuǎn)三角尺的過(guò)程中,△AOB的周長(zhǎng)是否存在最小值?若存在,求出最小值.

【答案】1見(jiàn)解析;(2)四邊形 AOBM 的面積沒(méi)有發(fā)生變化, 理由見(jiàn)解析;(3)當(dāng) x=2 時(shí),△AOB 的周長(zhǎng)有最小值,最小值為=4+2

【解析】

(1)過(guò)點(diǎn) M MEOP 于點(diǎn) E,作 MFOQ 于點(diǎn) F,根據(jù)正方形的判定定理得到四邊形 OEMF 是正方形,證明△AME≌△BMF,根據(jù)全等三角形的性質(zhì)解答;

(2)根據(jù)全等三角形的性質(zhì)得到四邊形 AOBM 的面積=正方形 EOFM 的面積;

(3)根據(jù)全等三角形的性質(zhì)得到得到 AE=BF,設(shè) OA=x,根據(jù)勾股定理得到AB=,根據(jù)三角形的周長(zhǎng)公式,二次函數(shù)的性質(zhì)解答.

1)過(guò)點(diǎn) M MEOP 于點(diǎn) E,作 MFOQ 于點(diǎn) F,

∵∠O=90°,∠MEO=90°,∠OFM=90°,

∴四邊形 OEMF 是矩形,

M PQ 的中點(diǎn),OP=OQ=4,

ME=OQ=2,MF=OP=2,

ME=MF,

∴四邊形 OEMF 是正方形,

∵∠AME+AMF=90°,∠BMF+AMF=90°,

∴∠AME=BMF,

在△AME 和△BMF 中,

∴△AME≌△BMFASA),

MA=MB

(2)四邊形 AOBM 的面積沒(méi)有發(fā)生變化, 理由如下:∵△AME≌△BMF,

∴四邊形 AOBM 的面積=正方形 EOFM 的面積=4;

(3)∵△AME≌△BMF,

AE=BF,

設(shè) OA=x,則 AE=2x,

OB=OF+BF=2+2x=4x,

RtAME 中,AM== ,

∵∠AMB=90°,MA=MB,

AB=AM= ,

AOB 的周長(zhǎng)=OA+OB+AB

=x+4x+

=4+,

則當(dāng) x=2 時(shí),△AOB 的周長(zhǎng)有最小值,最小值為=4+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.

(1)求k、b的值;

(2)若點(diǎn)Dy軸負(fù)半軸上,且滿足SCOD=SBOC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AB=AD=8,A=60°,D=150°,四邊形的周長(zhǎng)為32,求BC和DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A0,6)、點(diǎn)B8,0),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.

1求直線AB的解析式;

2當(dāng)t為何值時(shí),△APQ與△AOB相似?

3當(dāng)t為何值時(shí),△APQ的面積為個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC90°DBC的中點(diǎn),EAD的中點(diǎn),過(guò)點(diǎn)AAFBCBE的延長(zhǎng)線于點(diǎn)F.

1)求證:△AEF≌△DEB;

2)求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) 均在雙曲線上,下列說(shuō)法中錯(cuò)誤的是(

A.,則B.,則

C.,則D.,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量校園水平地面上一棵不可攀的樹(shù)的高度,學(xué)校數(shù)學(xué)興趣小組做了如下探索:根據(jù)光的反射定律,利用一面鏡子和一根皮尺,設(shè)計(jì)如下圖所示的測(cè)量方案:把一面很小的鏡子水平放置在離B(樹(shù)底)8.4米的點(diǎn)E處,然后沿著直線BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹(shù)梢頂點(diǎn)A,再用皮尺量得DE=3.2米,觀察者目高CD=1.6米,求樹(shù)AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我區(qū)某中學(xué)開(kāi)展社會(huì)主義核心價(jià)值觀演講比賽活動(dòng),九(1)、九(2)班根據(jù)初賽成績(jī)各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)(滿分為100分)如圖所示.根據(jù)圖中數(shù)據(jù)解決下列問(wèn)題:

(1)九(1)班復(fù)賽成績(jī)的中位數(shù)是   分,九(2)班復(fù)賽成績(jī)的眾數(shù)是   分;

(2)小明同學(xué)已經(jīng)算出了九(1)班復(fù)賽的平均成績(jī) =85分;方差S2= [(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),請(qǐng)你求出九(2)班復(fù)賽的平均成績(jī)x2和方差S22

(3)根據(jù)(2)中計(jì)算結(jié)果,分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為的正方形繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°,那么圖中點(diǎn)M的坐標(biāo)為( 。

A.1B.1,C.D.,

查看答案和解析>>

同步練習(xí)冊(cè)答案