【題目】在長方形內(nèi),將兩張邊長分別為的正方形紙片按如圖,如圖兩種方式放置(如圖,如圖中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)如圖1中陰影部分的面積為,如圖2中陰影部分的面積為.當(dāng)時,的值為( )

A. 0B. C. D.

【答案】D

【解析】

利用面積的和差分別表示出S1S2,然后利用整式的混合運算計算它們的差.

解:∵S1=AB-aa+CD-b)(AD-a=AB-aa+AB-b)(AD-a),
S2=ABAD-a+a-b)(AB-a),
S2-S1
=ABAD-a+a-b)(AB-a-AB-aa-AB-b)(AD-a
=AD-a)(AB-AB+b+AB-a)(a-b-a
=bAD-ab-bAB+ab=bAD-AB
=3b
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有20個球,其中紅球6個,白球和黑球若干個,每個球除顏色外完全相同.

(1)小明通過大量重復(fù)試驗(每次將球攪勻后,任意摸出一個球,記下顏色后放回)發(fā)現(xiàn),摸出的黑球的頻率在0.4附近擺動,請你估計袋中黑球的個數(shù).

(2)若小明摸出的第一個球是白球,不放回,從袋中余下的球中再任意摸出一個球,摸出白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明:

已知:AB//CD,連ADBC于點F,∠1=2,求證:∠B+CDE=180°

證明:∵∠1= ( )

又∵∠1=2

∴∠BFD=2( )

BC// ( )

∴∠C+ =180°( )

又∵AB//CD

∴∠B=C( )

∴∠B+CDE=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB、AC相交于點D,BE∥AC,AE∥OB.函數(shù) (k>0,x>0)的圖象經(jīng)過點E.若點A、C的坐標(biāo)分別為(3,0)、(0,2),則k的值為( )

A.3
B.4
C.4.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1+∠2180°,∠A=∠C,DA平分∠BDF

1AEFC會平行嗎?說明理由;

2ADBC的位置關(guān)系如何?為什么?

3BC平分∠DBE嗎?為什么.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點在直線上,,則的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線、之間有一個直角三角形,其中.

(1)如圖,點在直線上,、在直線上,若,.試說明:;

(2)將三角形如圖放置,直線,點分別在直線上,且平分.的度數(shù);(的代數(shù)式表示)

(3)(2)的前提下,直線平分交直線,如圖.取不同數(shù)值時,的大小是否發(fā)生變化?若不變求其值,若變化請求出變化的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖,在直角三角形ABC中,BAC=90°,ADBC于點D,可知:BAD=C(不需要證明);

特例探究:如圖,MAN=90°,射線AE在這個角的內(nèi)部,點B、C在MAN的邊AM、AN上,且AB=AC, CFAE于點F,BDAE于點D.證明:ABD≌△CAF;

歸納證明:如圖,點BC在MAN的邊AM、AN上,點EF在MAN內(nèi)部的射線AD上,1、2分別是ABE、CAF的外角.已知AB=AC, 1=2=BAC.求證:ABE≌△CAF;

拓展應(yīng)用:如圖,在ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,1=2=BAC.若ABC的面積為15,則ACF與BDE的面積之和為 .(12分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,是軸對稱圖形,但不是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案