【題目】如圖,AOB中,∠O=90°,AO=8cm,BO=6cm,點CA點出發(fā),在邊AO上以2cm/s的速度向O點運動,與此同時,點D從點B出發(fā),在邊BO上以1.5cm/s的速度向O點運動,過OC的中點ECD的垂線EF,則當點C運動了__s時,以C點為圓心,1.5cm為半徑的圓與直線EF相切.

【答案】

【解析】當以點C為圓心,2cm為半徑的圓與直線EF相切時,

此時,CF=2,

∵AC=2t,BD=t,

∴OC=82t,OD=6t,

∵點E是OC的中點,

∴CE=OC=4t,

∵∠EFC=∠O=90°,∠FCE=∠DCO

∴△EFC∽△DCO

,即

=,

由勾股定理可知:CE2=CF2+EF2,

∴(4t)2=22+()2,

解得:t=或t=,

∵0t4,

∴t=.

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次蠟燭燃燒試驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示,請根據(jù)圖象所提供的信息解答下列問題:

1)甲、乙兩根蠟燭燃燒前的高度分別是 ,從點燃到燃盡甲所用的時間為

2)分別求甲、乙兩根蠟燭燃燒時yx之間的函數(shù)關(guān)系式;

3)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么時間段內(nèi),甲蠟燭比乙蠟燭高?在什么時間段內(nèi),甲蠟燭比乙蠟低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CDAB,且CD2=ADDB,AE平分CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DFDC.則下列結(jié)論正確的是( 。

A. ①②④ B. ②③④ C. ①②③④ D. ①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Qy軸上的一個動點.

1)請直接寫出a,kb的值及關(guān)于x的不等式ax2kx2的解集;

2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;

3)是否存在以PQ,AB為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,ABCD交于點E,點PCD延長線上的一點,AP=AC,且∠B=2P.

(1)求證:PA是⊙O的切線;

(2)PD=,求⊙O的直徑;

(3)在(2)的條件下,若點B等分半圓CD,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;

(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MNy軸交直線BC于點N,求MN的最大值;

(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,ABN的面積為S2,且S1=6S2,求點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠A60°,∠CBM,∠BCN是△ABC的外角,∠CBM,∠BCN的平分線BD,CD交于點D

(1)求∠BDC的度數(shù);

(2)在圖1中,過點DDEBD,垂足為點D,過點BBFDEDC的延長線于點F(如圖2),求證:BF是∠ABC的平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,以點B為圓心,BC長為半徑畫弧,交邊AB與點D,以A為圓心,AD長為半徑畫弧,交邊AC于點E,連接CD

1)若∠A=28°,求∠ACD的度數(shù);

2)設(shè)BC=a,AC=b

①線段AD的長是方程的一個根嗎?為什么?

②若AD=EC,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=7cm,ABC=30°,點PA點出發(fā),以1cm/s的速度向B點移動,點QB點出發(fā),以2cm/s的速度向C點移動.如果P、Q兩點同時出發(fā),經(jīng)過幾秒后△PBQ的面積等于4cm2?

查看答案和解析>>

同步練習冊答案