【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且ABAE,延長ABDE的延長線交于點F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

【答案】①②⑤

【解析】

由平行四邊形的性質(zhì)得出ADBC,AD=BC,由AE平分∠BAD,可得∠BAE=DAE,可得∠BAE=BEA,得AB=BE,由AB=AE,得到△ABE是等邊三角形,②正確;則∠ABE=EAD=60°,由SAS證明△ABC≌△EAD,①正確;由△FCD與△ABD等底(AB=CD)等高(ABCD間的距離相等),得出SFCD=SABD,由△AEC與△DEC同底等高,所以SAEC=SDEC,得出SABE=SCEF.⑤正確.

∵四邊形ABCD是平行四邊形,

ADBC,AD=BC

∴∠EAD=AEB,

又∵AE平分∠BAD

∴∠BAE=DAE,

∴∠BAE=BEA

AB=BE,

AB=AE

∴△ABE是等邊三角形;

②正確;

∴∠ABE=EAD=60°,

AB=AEBC=AD,

∴△ABC≌△EADSAS);

①正確;

∵△FCD與△ABC等底(AB=CD)等高(ABCD間的距離相等),

SFCD=SABC

又∵△AEC與△DEC同底等高,

SAEC=SDEC

SABE=SCEF;

⑤正確.

ADAF相等,即∠AFD=ADF=DEC,

EC=CD=BE,

BC=2CD

題中未限定這一條件,

∴③④不一定正確;

故答案為:①②⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點從點出發(fā)沿方向以的速度向點勻速運動,同時點從點出發(fā)沿方向以的速度向點勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點運動的時間是.過點于點連結(jié)

1)求證:;

2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值,如果不能,說明理由;

3)當(dāng)為何值時,為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】期中考試臨近,某校初二年級教師對復(fù)習(xí)課中學(xué)生參與的深度與廣度進(jìn)行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

1)在這次評價中,一共抽查了_________名學(xué)生;

2)在扇形統(tǒng)計圖中,項目主動質(zhì)疑所在的扇形的圓心角的度數(shù)為______度;

3)請將頻數(shù)分布直方圖補充完整;

4)如果全市有8000名初二學(xué)生,那么在復(fù)習(xí)課中,獨立思考的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,點DF分別在AB、AC上,CF=CB,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF

(1)求證:BCD≌△FCE;

(2)若EFCD,求BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車行駛時的平均耗油量為0.15/千米,下面圖象是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的變化情況:

1)在這個變化過程中,自變量、因變量各是多少?

2)根據(jù)圖象,直接寫出汽車行駛200千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量.

3)求的關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,每個轉(zhuǎn)盤分成三個相同的扇形,涂色情況如圖所示,指針的位置固定,同時轉(zhuǎn)動兩個轉(zhuǎn)盤,回答以下問題:

1 2

2

1

(1)補全表格:圓1的所有可能結(jié)果有 種,分別是 ;

圓2的所有可能結(jié)果有 種,分別是 .

(2)寫出:轉(zhuǎn)盤停止后指針指向同種顏色區(qū)域的概率和至少有一指針指向紅色區(qū)域的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)分別是,現(xiàn)同時將點分別向上平移2個單位長度,再向右平移2個單位長度,得到的對應(yīng)點.連接.

(1)寫出點的坐標(biāo)并求出四邊形的面積.

(2)軸上是否存在一點,使得的面積是面積的2倍?若存在,請求出點的坐標(biāo);若不存在,請說明理由.

(3)若點是直線上一個動點,連接,當(dāng)點在直線上運動時,請直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過DDEAC,垂足為E

1)證明:DE為⊙O的切線;

2)連接OE,若BC=4,求OEC的面積.

查看答案和解析>>

同步練習(xí)冊答案