【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(4,1),C(4,3),反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,點(diǎn)P是一次函數(shù)y=mx+3﹣4m(m≠0)的圖象與該反比例函數(shù)圖象的一個(gè)公共點(diǎn);
(1)求反比例函數(shù)的解析式;
(2)通過(guò)計(jì)算說(shuō)明一次函數(shù)y=mx+3﹣4m的圖象一定過(guò)點(diǎn)C;
(3)對(duì)于一次函數(shù)y=mx+3﹣4m(m≠0),當(dāng)y隨x的增大而增大時(shí),確定點(diǎn)P的橫坐標(biāo)的取值范圍,(不必寫(xiě)過(guò)程)
【答案】(1)y=;(2)C(4,3);(3)見(jiàn)解析.
【解析】試題分析:(1)由B(4,1),C(4,3)得到BC⊥x軸,BC=2,根據(jù)平行四邊形的性質(zhì)得AD=BC=2,而A點(diǎn)坐標(biāo)為(1,0),可得到點(diǎn)D的坐標(biāo)為(1,2),然后把D(1,2)代入y=即可得到k=2,從而可確定反比例函數(shù)的解析式;
(2)把x=4代入y=mx+3﹣4m(m≠0)得到y(tǒng)=3,即可說(shuō)明一次函數(shù)y=mx+3﹣4m(m≠0)的圖象一定過(guò)點(diǎn)C;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為x,由于一次函數(shù)y=mx+3﹣4m(m≠0)過(guò)C點(diǎn),并且y隨x的增大而增大時(shí),則P點(diǎn)的縱坐標(biāo)要小于3,橫坐標(biāo)要小于3,當(dāng)縱坐標(biāo)小于3時(shí),由y=得到x>,于是得到x的取值范圍.
試題解析:解:(1)∵B(4,1),C(4,3),
∴BC∥y軸,BC=2,
又∵四邊形ABCD是平行四邊形,
∴AD=BC=2,AD∥y軸,而A(1,0),
∴D(1,2),
∴由反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,可得k=1×2=2,
∴反比例函數(shù)的解析式為y=;
(2)∵在一次函數(shù)y=mx+3﹣4m中,當(dāng)x=4時(shí),y=4m+3﹣4m=3,
∴一次函數(shù)y=mx+3﹣4m的圖象一定過(guò)點(diǎn)C(4,3);
(3)點(diǎn)P的橫坐標(biāo)的取值范圍:<x<4.
如圖所示,過(guò)C(4,3)作y軸的垂線,交雙曲線于E,作x軸的垂線,交雙曲線于F,
當(dāng)y=3時(shí),3=,即x=,
∴點(diǎn)E的橫坐標(biāo)為;
由點(diǎn)C的橫坐標(biāo)為4,可得F的橫坐標(biāo)為4;
∵一次函數(shù)y=mx+3﹣4m的圖象一定過(guò)點(diǎn)C(4,3),且y隨x的增大而增大,
∴直線y=mx+3﹣4m與雙曲線的交點(diǎn)P落在EF之間的雙曲線上,
∴點(diǎn)P的橫坐標(biāo)的取值范圍是<x<4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)全校1200名學(xué)生進(jìn)行“校園安全知識(shí)”的教育活動(dòng),從1200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測(cè)試,成績(jī)?cè)u(píng)定按從高分到低分排列分為, , , 四個(gè)等級(jí),繪制了圖①、圖②兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)求本次被抽查的學(xué)生共有多少名?
(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中“”所在的扇形圓心角的度數(shù);
(4)估計(jì)全校“”等級(jí)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D、E是BC邊上的點(diǎn),BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于( 。
A. 3:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人民生活水平的提高,汽車(chē)進(jìn)入家庭的越來(lái)越多.我市某小區(qū)在2007年底擁有家庭轎車(chē)64輛,到了2009年底,家庭轎車(chē)數(shù)為100輛.
(1)若平均每年轎車(chē)數(shù)的增長(zhǎng)率相同,求這個(gè)增長(zhǎng)率.
(2)為了緩解停車(chē)矛盾,多增加一些車(chē)位,該小區(qū)決定投資15萬(wàn)元,再造一些停車(chē)位.據(jù)測(cè)算,建造一個(gè)室內(nèi)停車(chē)位,需5000元;建造一個(gè)室外停車(chē)位,需1000元.按實(shí)際情況考慮,計(jì)劃室外停車(chē)位數(shù)不少于室內(nèi)車(chē)位的2倍,又不能超過(guò)室內(nèi)車(chē)位的2.5倍.問(wèn),該小區(qū)有哪幾種建造方案?應(yīng)選擇哪種方案最合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形AOBC中,OB=4,OA=3,分別以O(shè)B,OA所在直線為x軸、y軸建立平面直角坐標(biāo)系,F(xiàn)是BC邊上的點(diǎn),過(guò)F點(diǎn)的反比例函數(shù)y=(k>0)的圖象與AC邊交于點(diǎn)E.若將△CEF沿EF翻折后,點(diǎn)C恰好落在OB上的點(diǎn)D處,則點(diǎn)F的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),直線y=x+2分別與x軸、y軸交于點(diǎn)A、C.拋物線y=﹣+bx+c經(jīng)過(guò)點(diǎn)A與點(diǎn)C,且與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.點(diǎn)D在該拋物線上,且位于直線AC的上方.
(1)求上述拋物線的表達(dá)式;
(2)聯(lián)結(jié)BC、BD,且BD交AC于點(diǎn)E,如果△ABE的面積與△ABC的面積之比為4:5,求∠DBA的余切值;
(3)過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,聯(lián)結(jié)CD.若△CFD與△AOC相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到AB′C′D′,如果AB=1,點(diǎn)C與C′的距離為( 。
A. B. ﹣ C. 1 D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點(diǎn),與軸、軸分別交于C、D兩點(diǎn).已知: ,點(diǎn)B的坐標(biāo)為.
(1)求該反比例函數(shù)的解析式和點(diǎn)D的坐標(biāo);
(2)點(diǎn)M在射線CA上,且MA=2AC,求△MOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是AC的一點(diǎn),連接EB,過(guò)點(diǎn)A做AM⊥BE,垂足為M,AM與BD相交于點(diǎn)F.
(1)猜想:如圖(1)線段OE與線段OF的數(shù)量關(guān)系為 ;
(2)拓展:如圖(2),若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,AM、DB的延長(zhǎng)線相交于點(diǎn)F,其他條件不變,(1)的結(jié)論還成立嗎?如果成立,請(qǐng)僅就圖(2)給出證明;如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com