對稱軸是x=-2的拋物線的是( )
A.y=-2x2-2
B.y=2x2-2
C.y=(x+2)2
D.y=2(x-2)2
【答案】分析:根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,對稱軸為直線x=-可對A、B進(jìn)行判斷;利用拋物線的頂點式y(tǒng)=a(x+2+,其對稱軸為直線x=-可對C、D進(jìn)行判斷.
解答:解:A、拋物線y=-2x2-2的對稱軸為直線x=0,所以A選項錯誤;
B、拋物線y=2x2-2的對稱軸為直線x=0,所以B選項錯誤;
C、拋物線y=(x+2)2的對稱軸為直線x=-2,所以C選項正確;
D、拋物線y=2(x-2)2的對稱軸為直線x=2,所以D選項錯誤.
故選C.
點評:本題考查了二次函數(shù)的性質(zhì):二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,其頂點式為y=a(x+2+,對稱軸為直線x=-
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•安慶二模)同時拋擲兩枚均勻的骰子,骰子個面上的點數(shù)分別是1、2、…、6拋出的點數(shù)之和為x,概率為p.
(1)當(dāng)p=
112
時,求x值.
(2)若將所有的x,p記作點(x,p),則有11個點,這些點是否關(guān)于某一直線對稱?若對稱,寫出對稱軸方程.
(3)這些點是否在同一拋物線上:
(填“是”或“否”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

同時拋擲兩枚均勻的骰子,骰子個面上的點數(shù)分別是1、2、…、6拋出的點數(shù)之和為x,概率為p.
(1)當(dāng)數(shù)學(xué)公式時,求x值.
(2)若將所有的x,p記作點(x,p),則有11個點,這些點是否關(guān)于某一直線對稱?若對稱,寫出對稱軸方程.
(3)這些點是否在同一拋物線上:______(填“是”或“否”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:解答題

如圖,在平面直角坐標(biāo)系中,一拋物線的對稱軸為直線x=1,與y軸負(fù)半軸交于C點,與x軸交于A、B兩點,其中B點的坐標(biāo)為(3,0),且OB=OC。
(1)求此拋線的解析式;
(2)若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當(dāng)點P運(yùn)動到什么位置時,△APG的面積最大?求出此時P點的坐標(biāo)和△APG的最大面積;
(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側(cè)),在x軸上是否存在點Q,使△MNQ為等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年安徽省安慶市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

同時拋擲兩枚均勻的骰子,骰子個面上的點數(shù)分別是1、2、…、6拋出的點數(shù)之和為x,概率為p.
(1)當(dāng)時,求x值.
(2)若將所有的x,p記作點(x,p),則有11個點,這些點是否關(guān)于某一直線對稱?若對稱,寫出對稱軸方程.
(3)這些點是否在同一拋物線上:______(填“是”或“否”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:安慶二模 題型:解答題

同時拋擲兩枚均勻的骰子,骰子個面上的點數(shù)分別是1、2、…、6拋出的點數(shù)之和為x,概率為p.
(1)當(dāng)p=
1
12
時,求x值.
(2)若將所有的x,p記作點(x,p),則有11個點,這些點是否關(guān)于某一直線對稱?若對稱,寫出對稱軸方程.
(3)這些點是否在同一拋物線上:______(填“是”或“否”).

查看答案和解析>>

同步練習(xí)冊答案