【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( 。
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
【答案】D
【解析】如圖,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折疊的性質(zhì)求出折疊部分的解析式為y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直線y=﹣x+m經(jīng)過點A(﹣2,0)時m的值和當直線y=﹣x+m與拋物線y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共點時m的值,從而得到當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍.
如圖,當y=0時,﹣x2+x+6=0,解得x1=﹣2,x2=3,則A(﹣2,0),B(3,0),
將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方的部分圖象的解析式為y=(x+2)(x﹣3),
即y=x2﹣x﹣6(﹣2≤x≤3),
當直線y=﹣x+m經(jīng)過點A(﹣2,0)時,2+m=0,解得m=﹣2;
當直線y=﹣x+m與拋物線y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共點時,方程x2﹣x﹣6=﹣x+m有相等的實數(shù)解,解得m=﹣6,
所以當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍為﹣6<m<﹣2,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】隨著手機的普及,微信(一種聊天軟件)的興起,許多人抓住這種機會,做起了“微商”很多農(nóng)產(chǎn)品也改變了原來的銷售模式,實行了網(wǎng)上銷售,剛大學畢業(yè)的小明把自家的冬棗產(chǎn)品也放到了網(wǎng)上,他原計劃每天賣斤冬棗,但由于種種原因,實際每天的銷售量與計劃量相比有出入,下表是某周的銷售情況(超額記為正,不足記為負單位:斤);
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計劃量的差值 |
(1)根據(jù)記錄的數(shù)據(jù)可知前三天共賣出 斤;
(2)根據(jù)記錄的數(shù)據(jù)可知該周銷售量最多的一天比銷售量最少的一天多銷售 斤;
(3)本周實際銷售總量是否達到了計劃數(shù)量?試通過計算說明理由.
(4)若冬棗每斤按元出售,每斤冬棗的運費平均元(運費由小明承擔),那么小明本周一共收入多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△BCD中,∠CBD=90°,BC=BD,點A在CB的延長線上,且BA=BC,點E在直線BD上移動,過點E作射線EF⊥EA,交CD所在直線于點F.
(1)當點E在線段BD上移動時,如圖(1)所示,求證:BC﹣DE=DF.
(2)當點E在直線BD上移動時,如圖(2)、圖(3)所示,線段BC、DE與DF又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小紅在一次放風箏活動中某時段的示意圖,她在A處時的風箏線(整個過程中風箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小紅身高1.5米.
(1)當風箏的水平距離AC=18米時,求此時風箏線AD的長度;
(2)當她從點A跑動9米到達點B處時,風箏線與水平線構(gòu)成45°角,此時風箏到達點E處,風箏的水平移動距離CF=10米,這一過程中風箏線的長度保持不變,求風箏原來的高度C1D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標可以為( 。
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】六盤水市梅花山國際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測得滑行距離y(單位:cm)與滑行時間x(單位:s)之間的關(guān)系可以近似的用二次函數(shù)來表示.
滑行時間x/s | 0 | 1 | 2 | 3 | … |
滑行距離y/cm | 0 | 4 | 12 | 24 | … |
(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達式.現(xiàn)測量出滑雪者的出發(fā)點與終點的距離大約800m,他需要多少時間才能到達終點?
(2)將得到的二次函數(shù)圖象補充完整后,向左平移2個單位,再向上平移5個單位,求平移后的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AB=4,點C在半圓上,OC⊥AB,垂足為點O,P為半圓上任意一點,過P點作PE⊥OC于點E,設(shè)△OPE的內(nèi)心為M,連接OM、PM.
(1)求∠OMP的度數(shù);
(2)當點P在半圓上從點B運動到點A時,求內(nèi)心M所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y=y(tǒng)1+y2,y1與x成正比例,y2與x-2成正比例,當x=1時,y=0;當x=-3時,y=4.
(1)求y與x的函數(shù)關(guān)系式,并說明此函數(shù)是什么函數(shù);
(2)當x=3時,求y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點D為OB的中點,點E是線段AB上的動點,連結(jié)DE,作DF⊥DE,交OA于點F,連結(jié)EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.
(1)如圖1,當t=3時,求DF的長.
(2)如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.
(3)連結(jié)AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com