精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知AOBC的頂點O(0,0),A(﹣1,2),點Bx軸正半軸上按以下步驟作圖:①以點O為圓心,適當長度為半徑作弧,分別交邊OA,OB于點D,E;②分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧在∠AOB內交于點F;③作射線OF,交邊AC于點G,則點G的坐標為( 。

A. ﹣1,2) B. ,2) C. (3﹣,2) D. ﹣2,2)

【答案】A

【解析】依據勾股定理即可得到RtAOH中,AO=,依據∠AGO=AOG,即可得到AG=AO=,進而得出HG=-1,可得G(-1,2).

如圖,過點A作AH⊥x軸于H,AG與y軸交于點M,

AOBC的頂點O(0,0),A(-1,2),

AH=2,HO=1,

RtAOH中,AO=,

由題可得,OF平分∠AOB,

∴∠AOG=EOG

又∵AGOE,

∴∠AGO=EOG,

∴∠AGO=AOG,

AG=AO=,

MG=-1

G(-1,2)

故選:A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知A=2x2+3xy-2x-1,B=-x2+xy-1,且3A+6B的值與x無關,求y的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以等邊三角形ABCBC邊為直徑畫半圓,分別交AB、AC于點E、DDF是圓的切線,過點FBC的垂線交BC于點G.若AF的長為2,則FG的長為

A. 4 B. C. 6 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列判定中,正確的個數有( )

①一組對邊平行,一組對邊相等的四邊形是平行四邊形;

②對角線互相平分且相等的四邊形是矩形;

③對角線互相垂直的四邊形是菱形;

④對角線互相垂直平分且相等的四邊形是正方形,

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,ADBC于點DBEAC于點E,點FAB的中點, ADFE、BE分別交于點G、H,∠CBE=∠BAD.有下列結論:①FD=FE;② AH=2BD; ③AD·BC=AE·AB; ④2CD2=EH2.其中正確的結論有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校準備購進一批A、B兩型號節(jié)能燈,已知2只A型節(jié)能燈和3只B型節(jié)能燈共需31元;1只A型節(jié)能燈和2只B型節(jié)能燈共需19元.

(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元?

(2)學校準備購進這兩種型號的節(jié)能燈共100只,并且A型節(jié)能燈的數量不多于B型節(jié)能燈數量的2倍,請設計出最省錢的購買方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】世界杯比賽中,根據場上攻守形勢,守門員會在門前來回跑動,如果以球門線為基準,向前跑記作正數,返回則記作負數,一段時間內,某守門員的跑動情況記錄如下(單位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定開始計時時,守門員正好在球門線上)

(1)守門員最后是否回到球門線上?

(2)守門員離開球門線的最遠距離達多少米?

(3)如果守門員離開球門線的距離超過10米(不包括10米),則對方球員挑射極可能造成破門.請問在這一時間段內,對方球員有幾次挑射破門的機會?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有理數<0 、>0 、>0,且

1)在數軸上將a、bc三個數填在相應的括號中.

2)化簡:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓練,成績分別繪制成下列兩個統(tǒng)計圖:

根據以上信息,整理分析數據如下:

平均成績(環(huán))

中位數(環(huán))

眾數(環(huán))

方差

a

7

7

1.2

7

b

8

c

(1)寫出表格中a,b,c的值;

(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊成績,若選派其中一名參賽,你認為應選哪名隊員?

查看答案和解析>>

同步練習冊答案