(2005•黃石)如圖,小陽發(fā)現(xiàn)電線桿AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD與地面成30°角,且此時測得1米桿的影長為2米,則電線桿的高度為( )

A.9米
B.28米
C.
D.(14+2)米
【答案】分析:先根據(jù)CD的長以及坡角求出坡面上的影子在地面上的實際長度,即可知道電線桿的總影長,從而根據(jù)1米桿的影長為2米來解答.
解答:解:延長AD交BC的延長線于F點(diǎn),作DE⊥CF于E點(diǎn).
DE=8sin30°=4;
CE=8cos30°=4
∵測得1米桿的影長為2米.
∴EF=2DE=8
∴BF=BC+CE+EF=20+4+8=28+4
∴電線桿AB的長度是(28+4)=14+2米.
故選D.
點(diǎn)評:此題主要是運(yùn)用所學(xué)的解直角三角形的知識解決實際生活中的問題.注意:在同一時刻的物高與水平地面上的影長成正比例.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•黃石)如圖,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=4,BC=,CD=9.
(1)在BC邊上找一點(diǎn)O,過O點(diǎn)作OP⊥BC交AD于P,且OP2=AB•DC.求BO的長;
(2)以BC所在直線為x軸,OP所在直線為y軸,建立平面直角坐標(biāo)系,求經(jīng)過A、O、D三點(diǎn)的拋物線的解析式,并畫出引拋物線的草圖;
(3)在(2)中的拋物線上,連接AO、DO,證明:△AOD為直角三角形;過P點(diǎn)任作一直線與拋物線相交于A′(x1,y1),D′(x2,y2)兩點(diǎn),連接A′O、B′O,試問:△A′O′D′還為直角三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•黃石)如圖,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=4,BC=,CD=9.
(1)在BC邊上找一點(diǎn)O,過O點(diǎn)作OP⊥BC交AD于P,且OP2=AB•DC.求BO的長;
(2)以BC所在直線為x軸,OP所在直線為y軸,建立平面直角坐標(biāo)系,求經(jīng)過A、O、D三點(diǎn)的拋物線的解析式,并畫出引拋物線的草圖;
(3)在(2)中的拋物線上,連接AO、DO,證明:△AOD為直角三角形;過P點(diǎn)任作一直線與拋物線相交于A′(x1,y1),D′(x2,y2)兩點(diǎn),連接A′O、B′O,試問:△A′O′D′還為直角三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市義蓬一中中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2005•黃石)如圖,小陽發(fā)現(xiàn)電線桿AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD與地面成30°角,且此時測得1米桿的影長為2米,則電線桿的高度為( )

A.9米
B.28米
C.
D.(14+2)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(義橋?qū)嶒瀸W(xué)校 徐江)(解析版) 題型:選擇題

(2005•黃石)如圖,小陽發(fā)現(xiàn)電線桿AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD與地面成30°角,且此時測得1米桿的影長為2米,則電線桿的高度為( )

A.9米
B.28米
C.
D.(14+2)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2005•黃石)如圖,D是△ABC的AB邊上的一點(diǎn),過點(diǎn)D作DE∥BC交AC于E,若AD:DB=1:2,則BC:DE等于( )

A.1:3
B.2:3
C.3:1
D.2:1

查看答案和解析>>

同步練習(xí)冊答案