【題目】如圖1,在ABCD,AB=6,B= (60°<≤90°). 點(diǎn)EBC上,連接AE,把ABE沿AE折疊,使點(diǎn)BAD上的點(diǎn)F重合,連接EF.

(1)求證:四邊形ABEF是菱形;

(2)如圖2,點(diǎn)MBC上的動(dòng)點(diǎn),連接AM,把線段AM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)得到線段MN,連接FN,求FN的最小值(用含的代數(shù)式表示).

【答案】(1)詳見解析;(2)FE·sin( 90°)

【解析】

(1)由四邊形ABCD是平行四邊形得AFBE,所以∠FAE=BEA,由折疊的性質(zhì)得∠BAE=FAE,∠BEA=FEA,所以∠BAE=FEA,故有ABFE,因此四邊形ABEF是平行四邊形,又BE=EF,因此可得結(jié)論;

(2)根據(jù)點(diǎn)M在線段BE上和EC上兩種情況證明∠ENG90° ,利用菱形的性質(zhì)得到∠FEN 90°,再根據(jù)垂線段最短,求出FN的最小值即可.

1)∵四邊形ABCD是平行四邊形,

ADBC,

∴∠FAE=BEA,

由折疊的性質(zhì)得∠BAE=FAE,∠BEA=FEA, BE=EF,

∴∠BAE=FEA,

ABFE

∴四邊形ABEF是平行四邊形,

BE=EF

∴四邊形ABEF是菱形;

2)①如圖1,當(dāng)點(diǎn)M在線段BE上時(shí),在射線MC上取點(diǎn)G,使MGAB,連接GN、EN.

∵∠AMN=∠B,∠AMN+2=∠1+B

∴∠1=∠2

AMNM,ABMG

∴△ABM≌△MGN

∴∠B=∠3,NGBM

MGABBE

EGABNG

∴∠4=ENG= (180°)90°

又在菱形ABEF中,ABEF

∴∠FEC=∠B=

∴∠FEN=∠FEC-∠4= (90° ) 90°

②如圖2,當(dāng)點(diǎn)M在線段EC上時(shí),在BC延長線上截取MGAB,連接GNEN.

同理可得:∠FEN=∠FEC-∠4= (90° ) 90°

綜上所述,∠FEN 90°

∴當(dāng)點(diǎn)MBC上運(yùn)動(dòng)時(shí),點(diǎn)N在射線EH上運(yùn)動(dòng)(如圖3)

當(dāng)FNEH時(shí),FN最小,其最小值為FE·sin( 90°)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E是AD邊上的中點(diǎn),連接BE,并延長BE交CD的延長線于點(diǎn)F.

1)證明:FD=AB;(2)當(dāng)平行四邊形ABCD的面積為8時(shí),求△FED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為(  )

A. B. 9C. 12πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)EBC的中點(diǎn),AEBD于點(diǎn)F,BHAE于點(diǎn)G,連接OG,則下列結(jié)論中①OFOH,②AOF∽△BGF,③tanGOH2,④FG+CHGO,正確的個(gè)數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D在O的直徑AB的延長線上,點(diǎn)C在O上,AC=CD,ACD=120°.

(1)求證:CD是O的切線;

(2)若O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展以“學(xué)習(xí)朱子文化,弘揚(yáng)理學(xué)思想”為主題的讀書月活動(dòng),并向?qū)W生征集讀后感,學(xué)校將收到的讀后感篇數(shù)按年級(jí)進(jìn)行統(tǒng)計(jì),繪制了以下兩幅統(tǒng)計(jì)圖(不完整)

據(jù)圖中提供的信息完成以下問題

(1)扇形統(tǒng)計(jì)圖中“八年級(jí)”對(duì)應(yīng)的圓心角是   °,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)經(jīng)過評(píng)審,全校有4篇讀后感榮獲特等獎(jiǎng),其中有一篇來自七年級(jí),學(xué)校準(zhǔn)備從特等獎(jiǎng)讀后感中任選兩篇在校廣播電臺(tái)上播出,請(qǐng)利用畫樹狀圖或列表的方法求出七年級(jí)特等獎(jiǎng)讀后感被校廣播電臺(tái)播出的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.某商場(chǎng)為緩解停車難問題,擬建造地下停車庫,如圖是該地下停車庫坡道入口的設(shè)計(jì)示意圖,其中,ABBD,BAD=18°,CBD,BC=0.5 m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)?/span>.小明認(rèn)為CD的長就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長作為限制的高度.小明和小亮誰說得對(duì)?請(qǐng)你判斷并計(jì)算出正確的結(jié)果.(結(jié)果精確到0.1 m,參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系;線段CD表示每千克的銷售價(jià)y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.

1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義.

2)求線段AB所表示的y1x之間的函數(shù)表達(dá)式.

3)當(dāng)0≤x≤90時(shí),銷售該產(chǎn)品獲得的利潤與產(chǎn)量的關(guān)系式是   ;當(dāng)90≤x≤130時(shí),銷售該產(chǎn)品獲得的利潤與產(chǎn)量的關(guān)系式是   ;總之,當(dāng)產(chǎn)量為  kg時(shí),獲得的利潤最大,最大利潤是   

查看答案和解析>>

同步練習(xí)冊(cè)答案