【題目】如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F(xiàn)分別是線段BM,CM的中點,當AB:AD=___________時,四邊形MENF是正方形.

【答案】1:2

【解析】

試題當ABAD=1:2時,四邊形MENF是正方形,

理由是:∵ABAD=1:2,AMDM,ABCD

ABAMDMDC,

∵∠A=∠D=90°,

∴∠ABM=∠AMB=∠DMC=∠DCM=45°,

∴∠BMC=90°,

∵四邊形ABCD是矩形,

∴∠ABC=∠DCB=90°,

∴∠MBC=∠MCB=45°,

BMCM,

N、E、F分別是BC、BM、CM的中點,

BECF,MEMF,NFBM,NECM,

∴四邊形MENF是平行四邊形,

MEMF,∠BMC=90°,

∴四邊形MENF是正方形,

即當ABAD=1:2時,四邊形MENF是正方形,

故答案為:1:2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為參加學校的“我愛古詩詞”知識競賽,小王所在班級組織了一次古詩詞知識測試,并將全班同學的分數(shù)(得分取正整數(shù),滿分為100分)進行統(tǒng)計.以下是根據(jù)這次測試成績制作的不完整的頻率分布表和頻率分布直方圖.

組別

分組

頻數(shù)

頻率

1

50≤x<60

9

0.18

2

60≤x<70

a

3

70≤x<80

20

0.40

4

80≤x<90

0.08

5

90≤x≤100

2

b

合計

請根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:

(1)求出a、b、x、y的值;
(2)老師說:“小王的測試成績是全班同學成績的中位數(shù)”,那么小王的測試成績在什么范圍內(nèi)?
(3)若要從小明、小敏等五位成績優(yōu)秀的同學中隨機選取兩位參加競賽,請用“列表法”或“樹狀圖”求出小明、小敏同時被選中的概率.(注:五位同學請用A、B、C、D、E表示,其中小明為A,小敏為B)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點M,BE⊥CD于點E.

(1)求證:∠BME=∠MAB;
(2)求證:BM2=BEAB;
(3)若BE= ,sin∠BAM= ,求線段AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為6的大正方形中有兩個小正方形若兩個小正方形的面積分別為S1、S2 , S1+S2的值為(

A. 17 B. 18 C. 19 D. 20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.

(1)求證:四邊形ABFE是平行四邊形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(7分)如圖,ABC中,ACB=90°,D.E分別是BC、BA的中點,聯(lián)結(jié)DE,F(xiàn)在DE延長線上,且AF=AE.

(1)求證:四邊形ACEF是平行四邊形;

(2)若四邊形ACEF是菱形,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一副秋千架,左圖是從正面看,當秋千繩子自然下垂時,踏板離地面0.5m(踏板厚度忽略不計), 右圖是從側(cè)面看,當秋千踏板蕩起至點B位置時,點B離地面垂直高度BC為1m,離秋千支柱AD的水平距離BE為1.5m(不考慮支柱的直徑).求秋千支柱AD的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由兩個正方形組成的長方形花壇ABCD,小明從頂點A沿著花壇間小路直到走到長邊中點O,再從中點O走到正方形OCDF的中心,再從中心走到正方形GFH的中點,又從中心走到正方形IHJ的中心,再從中心走到正方形KJP的中心,一共走了m,則長方形花壇ABCD的周長是(

A. 36m B. 48m C. 96m D. 60m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等邊三角形,E是AC的中點,連接BE并延長,交DC于點F,求證:

(1)△ABE≌△CFE;
(2)四邊形ABFD是平行四邊形.

查看答案和解析>>

同步練習冊答案