【題目】已知數(shù)軸上兩點(diǎn)A、B表示的數(shù)分別為﹣3、1,點(diǎn)P為數(shù)軸上任意一點(diǎn),其表示的數(shù)為x,如果點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為6,則x的值是(  )

A. ﹣4 B. 2 C. 4 D. ﹣42

【答案】D

【解析】

根據(jù)A、B的距離為4,小于6,分點(diǎn)P在點(diǎn)A的左邊和點(diǎn)B的右邊兩種情況分別列出方程,然后求解即可.

AB=|1-(-3)|=4,點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和是6,

點(diǎn)P在點(diǎn)A的左邊時(shí),-3-x+1-x=6,

解得:x=-4,

點(diǎn)P在點(diǎn)B的右邊時(shí),x-1+x-(-3)=6,

解得:x=2,

綜上所述,x=-42;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC,CEAB,D、E為垂足,BDCE交于點(diǎn)O,則圖中全等三角形共有_________對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列各點(diǎn)中,與點(diǎn)A(-2,-4)的連線平行于y軸的是(  )

A. (2,-4) B. (-2,4) C. (-4,2) D. (4,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BEAC、CFAB于點(diǎn)E、F,BECF交于點(diǎn)D,DE=DF,連接AD

求證:(1FAD=EAD;

2BD=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形三邊長(zhǎng)分別為2,x5,若x為整數(shù),則這樣的三角形個(gè)數(shù)為(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).

(1)求拋物線的解析式;

(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);

(3)在條件(2)下,在拋物線的對(duì)稱軸上找一點(diǎn)M,使得△BDM的周長(zhǎng)為最小,并求△BDM周長(zhǎng)的最小值及此時(shí)點(diǎn)M的坐標(biāo);

(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請(qǐng)求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)﹣66×4+(﹣2.5)÷(﹣0.1)
(2)(﹣2)3+(﹣3)×[(﹣4)2+2]+(﹣3)2÷(﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間28名工人生產(chǎn)螺栓和螺母,螺栓與螺母?jìng)(gè)數(shù)比為1:2剛好配套,每人每天平均生產(chǎn)螺栓12個(gè)或螺母18個(gè),求多少人生產(chǎn)螺栓?設(shè):有x名工人生產(chǎn)螺栓,其余人生產(chǎn)螺母.依題意列方程應(yīng)為(  )

A. 12x=18(28﹣x) B. 2×12x=18(28﹣x)

C. 12×18x=18(28﹣x) D. 12x=2×18(28﹣x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是AB上任一點(diǎn)ABC=ABD,從下列各條件中補(bǔ)充一個(gè)條件不一定能推出ΔAPC≌ΔAPD的是( )

A.BC=BD BACB=ADB CAC=AD DCAB=DAB

查看答案和解析>>

同步練習(xí)冊(cè)答案