【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經測量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°,連接AC.
(1)△ACD是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問鋪滿這塊空地共需花費多少元?
【答案】(1) △ACD是直角三角形,見解析; (2) 3600元.
【解析】
(1)先在Rt△ABC中,利用勾股定理可求AC,在△ACD中,易求AC2+CD2=AD2,再利用勾股定理的逆定理可知△ACD是直角三角形,且∠ACD=90°;
(2)分別利用三角形的面積公式求出△ABC、△ACD的面積,兩者相加即是四邊形ABCD的面積,再乘以100,即可求總花費.
解:(1)在Rt△ABC中,
∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2
∴AC=5cm,
在△ACD中,AC=5cm,CD=12m,DA=13m,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,∠ACD=90°;.
(2)∵S△ABC=×3×4=6,S△ACD=×5×12=30,
∴S四邊形ABCD=6+30=36,
費用=36×100=3600(元)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C、E和B、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )
A. 80° B. 90° C. 100° D. 108°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,則下列結論:
①關于x的一元二次方程ax2+bx+c=0的根是﹣1,3;②abc>0;③a+b=c﹣b;④y最大值=c;⑤a+4b=3c中正確的有_____(填寫正確的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AB=4,點E為AB的中點.以AE為邊作等邊△ADE(點D與點C分別在AB的異側),連接CD.則△ACD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們經濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛入.如圖,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(1,5),直線l1:y=x,直線l2過原點且與x軸正半軸成60°夾角,在l1上有一動點M,在l2上有一動點N,連接AM、MN,則AM+MN的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王老師將本班的“校園安全知識競賽”成績(成績用s表示,滿分為100分)分為5組,第1組:50≤x<60,第2組:60≤x<70,…,第5組:90≤x<100.并繪制了如圖所示的頻率分布表和頻數(shù)分布直方圖(不完整).
(1)請補全頻率分布表和頻數(shù)分布直方圖;
(2)王老師從第1組和第5組的學生中,隨機抽取兩名學生進行談話,求第1組至少有一名學生被抽到的概率;
(3)設從第1組和第5組中隨機抽到的兩名學生的成績分別為m、n,求事件“|m﹣n|≤10”的概率.
分組編號 | 成績 | 頻數(shù) | 頻率 |
第1組 | 50≤s<60 | 0.04 | |
第2組 | 60≤s<70 | 8 | 0.16 |
第3組 | 70≤s<80 | 0.4 | |
第4組 | 80≤s<90 | 17 | 0.34 |
第5組 | 90≤s≤100 | 3 | 0.06 |
合計 | 1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線與軸,軸分別交于A,B兩點,過點B在第二象限內作且,連接.
(1)求點C的坐標.
(2)如圖2,過點C作直線軸交AB于點D,交軸于點E,
請從下列A,B兩題中任選一題作答,我選擇______題
A.①求線段CD的長.
②在坐標平面內,是否存在點M(除點B外),使得以點M,C,D為頂點的三角形與全等?若存在,請直接寫出所有符合條件的點M的坐標:若不存在,請說明理由.
B.①如圖3,在圖2的基礎上,過點D作于點F,求線段DF的長.
②在坐標平面內,是否存在點M(除點F外),使得以點M,C,D為頂點的三角形與全等?若存在,請直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了預防“甲型H1N1”,某校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,求y關于x的函數(shù)關系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關系式呢?
(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,生方可進教室,那么從消毒開始,至少需要幾分鐘后,生才能進入教室?
(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com