【題目】如圖1,在正方形ABCD中,P是對(duì)角線BD上的點(diǎn),點(diǎn)E在AB上,且PA=PE.

(1)求證:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究CPEABC之間的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2)EPC=90°(3)ABC+EPC=180°

【解析】

試題分析:(1)先證出ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;

(2)由ABP≌△CBP,得BAP=BCP,進(jìn)而得DAP=DCP,由PA=PC,得到DAP=E,DCP=E,最后CPF=EDF=90°得到結(jié)論;

(3)借助(1)和(2)的證明方法容易證明結(jié)論.

(1)證明:在正方形ABCD中,AB=BC,

ABP=CBP=45°,

ABPCBP中,

,

∴△ABP≌△CBP(SAS),

PA=PC

PA=PE,

PC=PE;

(2)解:由(1)知,ABP≌△CBP,

∴∠BAP=BCP

PA=PE,

∴∠PAE=PEA,

∴∠CPB=AEP,

∵∠AEP+PEB=180°,

∴∠PEB+PCB=180°,

∴∠ABC+EPC=180°,

∵∠ABC=90°

∴∠EPC=90°;

(3)ABC+EPC=180°,

理由:解:在菱形ABCD中,AB=BC,ABP=CBP=60°,

ABPCBP中,

∴△ABP≌△CBP(SAS),

∴∠BAP=BCP,

PA=PE,

∴∠DAP=DCP,

∴∠PAE=PEA,

∴∠CPB=AEP

∵∠AEP+PEB=180°,

∴∠PEB+PCB=180°,

∴∠ABC+EPC=180°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作不軸的垂線交直于點(diǎn)以原點(diǎn)為圓心,的長(zhǎng)為半徑斷弧交軸正半軸于點(diǎn);再過(guò)點(diǎn)軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn);…按此作法進(jìn)行下去,的長(zhǎng)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,斜邊AB邊上的高CD與角平分線AE交于點(diǎn)F,經(jīng)過(guò)垂足D的直線分別交直線CA,BC于點(diǎn)MN

1)若AC=3,BC=4,AB=5,求CD的長(zhǎng);

2)當(dāng)∠AMN=32°,∠B=38°時(shí),求∠MDB的度數(shù);

3)當(dāng)∠AMN=BDN時(shí),寫出圖中所有與∠CDN相等的角,并選擇其中一組進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

(1)把ABC向上平移3個(gè)單位后得到A1B1C1,請(qǐng)畫出A1B1C1并寫出點(diǎn)B1的坐標(biāo);

(2)已知點(diǎn)A與點(diǎn)A2(2,1)關(guān)于直線l成軸對(duì)稱,請(qǐng)畫出直線lABC關(guān)于直線l對(duì)稱的A2B2C2,并直接寫出直線l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)求拋物線的對(duì)稱軸及線段AB的長(zhǎng);

(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;

(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l:y=-x,點(diǎn)A1坐標(biāo)為(-4,0).過(guò)點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫弧交x軸負(fù)半軸于點(diǎn)A2,再過(guò)點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸負(fù)半軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A2018的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】概念學(xué)習(xí):規(guī)定:求若干個(gè)相同有理數(shù)(均不為0)的除法運(yùn)算叫做除方,如等,類比有理數(shù)的乘方,我們把記作,讀作“2的圈3次方記作,讀作的圈4次方,一般地,把記作讀作“a的圈n次方

初步探究:

1)直接寫出計(jì)算結(jié)果________,________;

2)關(guān)于除方,下列說(shuō)法不正確的是________

A.任何非零數(shù)的圈2次方都等于1

B.對(duì)于任何正整數(shù)n,

C.

D.負(fù)數(shù)的圈奇次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶次方結(jié)果是正數(shù)

深入思考:

我們知道有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?

1)試一試:將下列運(yùn)算結(jié)果直接寫成冪的形式:______;______;______

2)想一想:將一個(gè)非零有理數(shù)a的圈n次方寫成冪的形式為________

3)算一算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)七年級(jí)開展演講比賽,學(xué)校決定購(gòu)買一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的筆記本和鋼筆.筆記本定價(jià)為每本20元,鋼筆每支定價(jià)5元,經(jīng)洽談后,甲店每買一本筆記本贈(zèng)一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.七年級(jí)需筆記本20本,鋼筆若干支(不小于20支).問(wèn):

1)如果購(gòu)買鋼筆不小于20)支,則在甲店購(gòu)買需付款 ______ 元,在乙店購(gòu)買需付款 _______________ 元.(用x的代數(shù)式表示)

2)當(dāng)購(gòu)買鋼筆多少支時(shí),在兩店購(gòu)買付款一樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙兩座建筑物的水平距離,從甲的頂部處測(cè)得乙的頂部處的俯角為48°,測(cè)得底部處的俯角為58°,求乙建筑物的高度.(參考數(shù)據(jù):,,,.結(jié)果取整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案