【題目】如圖,RtABC,C=90°,點(diǎn)DBC邊的中點(diǎn)BD=2,tanB=

1)求ADAB的長(zhǎng)

2)求sin∠BAD的值

【答案】(1)AB=5,AD=;(2).

【解析】試題分析:(1)由中點(diǎn)定義求BC=4,根據(jù)tanB=得:AC=3,由勾股定理得:AB=5,AD=

2)作高線DE,證明DEB∽△ACB,求DE的長(zhǎng),再利用三角函數(shù)定義求結(jié)果.

試題解析:(1DBC的中點(diǎn),CD=2,

BD=DC=2,BC=4,

RtACB中,由tanB=

,

AC=3

由勾股定理得:AD=,

AB==5

2)過(guò)點(diǎn)DDEABE,

∴∠C=DEB=90°,

又∠B=B,

∴△DEB∽△ACB

,

DE,

sinBAD=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E是對(duì)角線BD上的一點(diǎn),過(guò)點(diǎn)CCFDB,且CF=DE,連接AE,BF,EF

1)求證:△ADE≌△BCF

2)若∠ABE+BFC=180°,則四邊形ABFE是什么特殊四邊形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交ABAC于點(diǎn)MN,再分別以MN為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是

ADBAC的平分線;②∠ADC=60°;點(diǎn)DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0).

1)在圖1中畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1直接寫出點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)

2)在圖2,以點(diǎn)O為位似中心,將△ABC放大使放大后的△A2B2C2與△ABC的對(duì)應(yīng)邊的比為21(畫出一種即可).直接寫出點(diǎn)C的對(duì)應(yīng)點(diǎn)C2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的三個(gè)頂點(diǎn)AO,C在坐標(biāo)軸上,矩形的面積為12,對(duì)角線AC所在直線的解析式為ykx4kk≠0).

1)求AC的坐標(biāo);

2)若DAC中點(diǎn),過(guò)D的直線交y軸負(fù)半軸于E,交BCF,且OE1,求直線EF的解析式;

3)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)G,使以C,DF,G為頂點(diǎn)的四邊形為平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解

如圖 a,在ABC 中,D BC 的中點(diǎn).如果用 SABC 表示ABC 的面積,則由等底等高的三角形的面積相等,可得.同理,如圖 b,在 ABC 中,D、E BC 的三等分點(diǎn),可得

結(jié)論應(yīng)用

已知ABC 的面積為 42,請(qǐng)利用上面的結(jié)論解決下列問(wèn)題:

(1)如圖 1,若 D、E 分別是 ABAC 的中點(diǎn),CD BE交于點(diǎn) F,則DBF 的面積為

類比推廣

(2)如圖 2,若 DE AB 的三等分點(diǎn),F、G AC 三等分點(diǎn),CD 分別交 BF、BG M、N,CE 分別交 BF、BG P、Q,求BEP 的面積;

(3)如圖2,問(wèn)題(2)中的條件不變,求四邊形EPMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 ,∠E=∠F90°,∠B=∠CACAB,給出下列結(jié)論:① 1=∠2;② BECF;③ ACNABM;④ CDDN,其中正確的結(jié)論有( )個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,點(diǎn),,…在射線上,點(diǎn),,,…在射線上,,,…均為等邊三角形,若,則的邊長(zhǎng)為(

A.8B.16C.24D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P在等邊△ABC內(nèi)且∠APC120°,則的最小值是( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案