(2013•杭州一模)已知:二次函數(shù)y=ax2+bx+c(a≠0)中的x,y滿足下表:
 x-1 
 y …-3-4-3 …
(1)m的值為______;
(2)若A(p,y1),B(p+1,y2)兩點(diǎn)都在該函數(shù)的圖象上,且p<0,試比較y1與y2的大。
【答案】分析:觀察表格知x=1是二次函數(shù)的對稱軸,x=3關(guān)于x=-1對稱,可得m=0,根據(jù)函數(shù)的增減性來判斷較y1與y2的大小.
解答:解:(1)由已知表格可得
函數(shù)的對稱軸為x=1,
∴m=0;(2分)

(2)∵p<0,
∴p<p+1<1,
∵對稱軸為x=1,
A、B兩點(diǎn)位于對稱軸的左側(cè),
又因?yàn)閽佄镩_口向上,
∴y1>y2.(5分)
故答案為0,y1>y2
點(diǎn)評:此題主要考查一元二次方程與函數(shù)的關(guān)系,函數(shù)與x軸的交點(diǎn)的橫坐標(biāo)就是方程的根,此題從表格中找函數(shù)的對稱軸,從而來運(yùn)用函數(shù)的增減性來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•杭州一模)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=DC,點(diǎn)E在對角線BD上,作∠ECF=90°,連接DF,且滿足CF=EC.
(1)求證:BD⊥DF.
(2)當(dāng)BC2=DE•DB時,試判斷四邊形DECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•杭州一模)如圖,在四邊形ABCD中,E、F分別是AB、AD的中點(diǎn),若EF=4,BC=10,CD=6,則sinC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•杭州一模)如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動點(diǎn)P、Q同時從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE-ED-DC運(yùn)動到點(diǎn)C時停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動到點(diǎn)C時停止.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖;
(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:
①當(dāng)0<t≤5時,y=
4
5
t2;②當(dāng)t=6秒時,△ABE≌△PQB;③cos∠CBE=
1
2
;④當(dāng)t=
29
2
秒時,△ABE∽△QBP;
其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•杭州一模)光明中學(xué)欲舉辦“校園吉尼斯挑戰(zhàn)賽”,為此學(xué)校隨機(jī)抽取男女學(xué)生各50名進(jìn)行一次“你喜歡的挑戰(zhàn)項(xiàng)目”的問卷調(diào)查,每名學(xué)生都選了一項(xiàng).根據(jù)收集到的數(shù)據(jù),繪制成如下統(tǒng)計(jì)圖(不完整):

根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)在本次隨機(jī)調(diào)查中,女生最喜歡“踢毽子”項(xiàng)目的有
10
10
人,男生最喜歡“乒乓球”項(xiàng)目的有
20
20
人;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有男生400人,女生450人,請估計(jì)該校喜歡“羽毛球”項(xiàng)目的學(xué)生總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•杭州一模)如圖,定長弦CD在以AB為直徑的⊙O上滑動(點(diǎn)C、D與點(diǎn)A、B不重合),M是CD的中點(diǎn),過點(diǎn)C作CP⊥AB于點(diǎn)P,若CD=3,AB=8,PM=l,則l的最大值是
4
4

查看答案和解析>>

同步練習(xí)冊答案