【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點(diǎn)F,CE平分∠BCD,交AD于點(diǎn)E,AB=7,EF=3,則BC長為( )
A.9
B.10
C.11
D.12
【答案】C
【解析】解:∵四邊形ABCD是平行四邊形,
∴AB=CD=7,BC=AD,AD∥BC,
∵BF平分∠ABC交AD于F,CE平分∠BCD交AD于E,
∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,
∴AB=AF=7,DC=DE=7,
∴EF=AF+DE﹣AD=7+7﹣AD=3.
∴AD=11,
∴BC=11.
所以答案是:C.
【考點(diǎn)精析】本題主要考查了角的平分線和平行四邊形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線;平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對(duì)于一個(gè)圖形,通過不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學(xué)等式:_____________________;寫出由圖3所表示的數(shù)學(xué)等式:_____________________;
(2)利用上述結(jié)論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題 ——
(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說明理由.
(2)結(jié)論應(yīng)用:
①如圖2,點(diǎn)M、N在反比例函數(shù)y= (k>0)的圖象上,過點(diǎn)M作ME⊥y軸,垂足分別為E,F(xiàn),試證明:MN∥EF;
②若①中的其他條件不變,只改變點(diǎn)M,N的位置如圖3所示,請(qǐng)判斷MN與EF是否平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)、、,…和、、,…分別在直線和軸上.,,,…都是等腰直角三角形,如果,,則點(diǎn)的橫坐標(biāo)是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2(1﹣m)x+m2=0的兩實(shí)數(shù)根為x1 , x2 , 則y=x1+x2+2x1x2的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是雙曲線y= 在第一象限分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊△ABC,點(diǎn)C在第四象限內(nèi),且隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也在不斷變化,但點(diǎn)C始終在雙曲線y= 上運(yùn)動(dòng),則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn):如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b.
填空:當(dāng)點(diǎn)A位于 時(shí),線段AC的長取得最大值,且最大值為 (用含a、b的式子表示);
(2)應(yīng)用:點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=2,如圖2,分別以AB、AC為邊,作等邊三角形ABD和等邊△ACE,連接CD、BE.
①請(qǐng)找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值;
③直接寫出△DBC面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com