【題目】如圖,四邊形ABCD為菱形,∠D=60°,AB=4,E為邊BC上的動點,連接AE,作AE的垂直平分線GF交直線CDF點,垂足為點G,則線段GF的最小值為____________

【答案】3

【解析】

作輔助線,構(gòu)建三角形全等,證明Rt△AFMRt△EFNHL),得∠AFM=EFN,再證明△AEF是等邊三角形,計算FG=AG=AE,確認(rèn)當(dāng)AEBC時,即AE=2時,FG最。

解:連接AC,過點FFM⊥AC于,作FN⊥BCN,連接AF、EF,

四邊形ABCD是菱形,且∠D=60°,

∴∠B=∠D=60°AD∥BC,

∴∠FCN=∠D=60°=∠FCM,

∴FM=FN,

∵FG垂直平分AE,

∴AF=EF,

∴Rt△AFM≌Rt△EFNHL),

∴∠AFM=∠EFN,

∴∠AFE=∠MFN,

∵∠FMC=∠FNC=90°,∠MCN=120°,

∴∠MFN=60°,

∴∠AFE=60°

∴△AEF是等邊三角形,

∴FG=AG=AE,

當(dāng)AE⊥BC時,Rt△ABE中,∠B=60°,

∴∠BAE=30°,

∵AB=4,

∴BE=2,AE=2

當(dāng)AE⊥BC時,即AE=2時,FG最小,最小為3

故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點,AE⊥BF于點G,且BE=1.

1)求證:ABE≌△BCF;

2)求出ABEBCF重疊部分(即BEG)的面積;

3)現(xiàn)將ABE繞點A逆時針方向旋轉(zhuǎn)到AB′E′(如圖2),使點E落在CD邊上的點E′處,問ABE在旋轉(zhuǎn)前后與BCF重疊部分的面積是否發(fā)生了變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人去南方批發(fā)茶葉,在某地A批發(fā)市場以每包m元的價格進(jìn)了40包茶葉,又到B批發(fā)市場時發(fā)現(xiàn)同樣的茶葉比A批發(fā)市場要便宜,每包的價格僅為n元,因此他又在B批發(fā)市場進(jìn)了60包同樣的茶葉.如果他銷售時以每包元的價格全部賣出這批茶葉,那么在不考慮其它因素的情況下他的這次買賣( 。

A.一定盈利B.一定虧損

C.不盈不虧D.盈虧不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的頂點都在菱形的邊上.設(shè)AE=AH=x0x1),矩形的面積為S

1)求S關(guān)于x的函數(shù)解析式;

2)當(dāng)EFGH是正方形時,求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點A對應(yīng)的數(shù)是﹣1,B點對應(yīng)的數(shù)是1,一只小蟲甲從點B出發(fā)沿著數(shù)軸的正方向以每秒4個單位的速度爬行至C點,再立即返回到A點,共用了4秒鐘.

1)求點C對應(yīng)的數(shù);

2)若小蟲甲返回到A點后再作如下運動:第1次向右爬行2個單位,第2次向左爬行4個單位,第3次向右爬行6個單位,第4次向左爬行8個單位,依次規(guī)律爬下去,求它第10次爬行所停在點所對應(yīng)的數(shù);

3)若小蟲甲返回到A后繼續(xù)沿著數(shù)軸的負(fù)方向以每秒4個單位的速度爬行,這時另一小蟲乙從點C出發(fā)沿著數(shù)軸的負(fù)方向以每秒7個單位的速度爬行,設(shè)甲小蟲對應(yīng)的點為E點,乙小蟲對應(yīng)的點為F點,設(shè)點AE、F、B所對應(yīng)的數(shù)分別是xA、xE、xF、xB,當(dāng)運動時間t不超過1秒時,請你結(jié)合數(shù)軸求出 |xAxE ||xExF |+ |xFxB |= .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是中心對稱圖形又是軸對稱圖形的是(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AE、CF分別被直線EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.將下列證明AB∥CD的過程及理由填寫完整.

證明:∵ ∠1="∠2" ( 已知 )

∴ AE∥

∴ ∠EAC =∠ ,(

AB平分∠EAC,CD平分∠ACG( 已知 )

∴∠ =∠EAC,∠4= ( 角平分線的定義 )

∴∠ =∠4(等量代換)

∴AB∥CD ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強(qiáng):如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進(jìn)價)銷售量】

1)請根據(jù)他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程的解也是關(guān)于的方程的解.

1)求、的值;

2)若線段,在直線AB上取一點P,恰好使,點QPB的中點,求線段AQ的長.

查看答案和解析>>

同步練習(xí)冊答案