【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
【答案】
(1)解:依題意得: ,
解之得: ,
∴拋物線解析式為y=﹣x2﹣2x+3
∵對稱軸為x=﹣1,且拋物線經(jīng)過A(1,0),
∴把B(﹣3,0)、C(0,3)分別代入直線y=mx+n,
得 ,
解之得: ,
∴直線y=mx+n的解析式為y=x+3;
(2)解:設(shè)直線BC與對稱軸x=﹣1的交點為M,則此時MA+MC的值最。
把x=﹣1代入直線y=x+3得,y=2,
∴M(﹣1,2),
即當點M到點A的距離與到點C的距離之和最小時M的坐標為(﹣1,2);
(3)解:設(shè)P(﹣1,t),
又∵B(﹣3,0),C(0,3),
∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,
①若點B為直角頂點,則BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;
②若點C為直角頂點,則BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,
③若點P為直角頂點,則PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1= ,t2= ;
綜上所述P的坐標為(﹣1,﹣2)或(﹣1,4)或(﹣1, ) 或(﹣1, ).
【解析】(1)根據(jù)對稱軸為直線x=﹣1拋物線經(jīng)過A(1,0),C(0,3)兩點,求出函數(shù)解析式,再求出拋物線與x軸的另一個交點坐標B,將B、C兩點分別代入直線y=mx+n,即可求出此函數(shù)解析式。
(2)由于點A、B關(guān)于直線x=1對稱,因此設(shè)直線BC與對稱軸的交點為M,則此時MA+MC的值最小,把x=﹣1代入直線y=x+3,即可求得點M的坐標。
(3)P(﹣1,t),由點B、C的坐標分別求出BC2、PB2、PC2,再分三種情況討論:①若點B為直角頂點②若點C為直角頂點③若點P為直角頂點,建立方程,求出符合題意的t的值,即可求出點P的坐標。
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知:AB=24cm,CD=8cm.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡);
(2)求(1)中所作圓的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在抗洪搶險中,解放軍戰(zhàn)士的沖鋒舟加滿油沿東西方向的河流搶救災民,早晨從地出發(fā),晚上到達地,約定向東為正方向,當天的航行路程記錄如下(單位:千米):,,,,,,,.
(1)請你幫忙確定地位于地的什么方向,距離地多少千米?
(2)若沖鋒舟每千米耗油升,郵箱容量為升,求沖鋒舟當天救災過程中至少還需補充多少升油?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD為矩形,G是BC上的任意一點,DE⊥AG于點E.
(1)如圖1,若AB=BC,BF∥DE,且交AG于點F,求證:AF﹣BF=EF;
(2)如圖2,在(1)條件下,AG= BG,求 ;
(3)如圖3,連EC,若CG=CD,DE=2,GE=1,則CE=(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程,乙工程隊單獨先做10天后,再由甲、乙兩個工程隊合作20天就能完成全部工程,已知甲工程隊單獨完成此工程所需天數(shù)是乙工程隊單獨完成此工程所需天數(shù)的 ,
(1)求:甲、乙工程隊單獨做完成此工程各需多少天?
(2)甲工程隊每天的費用為0.67萬元,乙工程隊每天的費用為0.33萬元,該工程的預算費用為20萬元,若甲、乙工程隊一起合作完成該工程,請問工程費用是否夠用,若不夠用應追加多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上點A表示的有理數(shù)為,點B表示的有理數(shù)為6,點P從點A出發(fā)以每秒2個單位長度的速度由運動,同時,點Q從點B出發(fā)以每秒1個單位長度的速度由運動,當點Q到達點A時P、Q兩點停止運動,設(shè)運動時間為單位:秒.
(1)求時,求點P和點Q表示的有理數(shù);
(2)求點P與點Q第一次重合時的t值;
(3)當t的值為多少時,點P表示的有理數(shù)與點Q表示的有理數(shù)距離是3個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家住房的地面結(jié)構(gòu)如圖所示,請根據(jù)圖中的數(shù)據(jù),解答下列問題:
(1)用含x的代數(shù)式表示地面總面積;
(2)已知客廳面積比衛(wèi)生間面積多這家房子的主人打算把廚房和衛(wèi)生間都鋪上地磚,已知鋪地磚的平均費用為60元,求鋪地磚的總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分ABC,P是BD上一點,過點P作PM^AD,PN^CD,垂足分別為M、N。
(1)求證:ADB=CDB;
(2)若ADC=90°,求證:四邊形MPND是正方形。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com