【題目】如圖,△AOB為等邊三角形,點(diǎn)A在第四象限,點(diǎn)B的坐標(biāo)為(4,0),過點(diǎn)C(4,0)作直線l交AO于D,交AB于E,且點(diǎn)E在某反比例函數(shù)y=(k≠0)圖象上,當(dāng)△ADE和△DCO的面積相等時(shí),k的值為( )
A.-
B.-
C.-3
D.-6
【答案】C
【解析】連接AC,由B的坐標(biāo)得到等邊三角形AOB的邊長,得到AO與CO,得到AO=OC,利用等邊對(duì)等角得到一對(duì)角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC為直角,可得出A的坐標(biāo),由三角形ADE與三角形DCO面積相等,且三角形AEC面積等于三角形AED與三角形ADC面積之和,三角形AOC面積等于三角形DCO面積與三角形ADC面積之和,得到三角形AEC與三角形AOC面積相等,進(jìn)而確定出AE的長,可得出E為AB中點(diǎn),得出E的坐標(biāo),將E坐標(biāo)代入反比例解析式中求出k的值,即可確定出反比例解析式。
如圖,連接AC,
∵點(diǎn)B的坐標(biāo)為(4,0),△AOB為等邊三角形,
∴AO=OB=4.
∴點(diǎn)A的坐標(biāo)為(2,-2).
∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.
∵∠AOB=60°,∴∠ACO=30°.
又∵∠B="60°." ∴∠BAC=90°.
∵S△ADE=S△DCO , S△AEC=S△ADE+S△ADC , S△AOC=S△DCO+S△ADC ,
∴∴S△AEC=S△AOC=×AEAC=CO2 , 即 AE2=×2×2 ,
∴E點(diǎn)為AB的中點(diǎn)(3,-).
把E點(diǎn)(3,-)代入y=中得:k=-3
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明有5張寫著不同數(shù)字的卡片,請(qǐng)你按要求抽出卡片,完成下列問題:
(1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,乘積的最大值是 ;
(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是 ;
(3)從中取出4張卡片.用學(xué)過的計(jì)算方法.使計(jì)算結(jié)果為24,請(qǐng)寫出這個(gè)運(yùn)算式.(至少寫出兩個(gè))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣1和3,則下列結(jié)論正確的是( 。
A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.當(dāng)a= 時(shí),△ABD是等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時(shí),函數(shù)圖象過點(diǎn)(﹣1,1)
B.當(dāng)a=﹣2時(shí),函數(shù)圖象與x軸沒有交點(diǎn)
C.若a>0,則當(dāng)x≥1時(shí),y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方上的動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對(duì)稱軸l上是否存在點(diǎn)P,使△PBN是等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.
(1)直接寫出函數(shù)y= 圖象上的所有“整點(diǎn)”A1 , A2 , A3 , …的坐標(biāo);
(2)在(1)的所有整點(diǎn)中任取兩點(diǎn),用樹狀圖或列表法求出這兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點(diǎn)A(8,0),與y軸分別交于點(diǎn)B(0,4)和點(diǎn)C(0,16),則圓心M到坐標(biāo)原點(diǎn)O的距離是( 。
A.10
B.8
C.4
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐ABC﹣A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2 .
(1)求證:AB1⊥CC1;
(2)若AB1=3 ,D1為線段A1C1上的點(diǎn),且三棱錐C﹣B1C1D1的體積為 ,求 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com