1 4 10
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6,即
.
分析:順次連接不在同一直線上的三個點可作1個三角形;當有4個點時,可作4個三角形;當有5個點時,可作10個三角形;依此類推當有n個點時,可作
個三角形.
解答:分析:順次連接不在同一直線上的三個點可作1個三角形;當有4個點時,可作4個三角形;當有5個點時,可作10個三角形;依此類推當有n個點時,可作
個三角形.
故答案為:1、4、10、
.
推導:平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6,即
.
故答案為:
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6,即
.
點評:此題考查了規(guī)律總結,運用由特殊到一般的方法,進行歸納總結.