【題目】如圖,AB是⊙O的直徑,直線MC與⊙O相切于點C.過點A作MC的垂線,垂足為D,線段AD與⊙O相交于點E.
(1)求證:AC是∠DAB的平分線;
(2)若AB=10,AC=4,求AE的長.
【答案】(1)詳見解析;(2)6.
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)得到∠OCM=90°,得到OC∥AD,根據(jù)平行線的性質(zhì)、等腰三角形的性質(zhì)證明結論;
(2)連接BC,連接BE交OC于點F,根據(jù)勾股定理求出BC,證明△CFB∽△BCA,根據(jù)相似三角形的性質(zhì)求出CF,得到OF的長,根據(jù)三角形中位線定理解答即可.
(1)證明:連接,如圖:
∵直線與相切于點
∴
∵
∴
∴
∴
∴
∵
∴
∴
∴是的平分線.
(2)解:連接,連接交于點,如圖:
∵AB是的直徑
∴
∵,
∴
∵
∴
∴,為線段中點
∵,
∴
∴,即
∴
∴
∵為直徑中點,為線段中點
∴.
故答案是:(1)詳見解析;(2)6
科目:初中數(shù)學 來源: 題型:
【題目】為減輕學生的作業(yè)負擔,某地教育局規(guī)定初中階段學生每晚的作業(yè)量不超過1.5小時,一個月后,九年一班芳芳對本班每位同學晚上作業(yè)時間進行了一次調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了如圖所示的不完整的頻數(shù)分布直方圖(每組包含最大值,不包含最小值),并知1﹣1.5h占45%,2~2.5h占10%,請根據(jù)以上信息解答問題.
(1)求該班共有多少名學生;
(2)求該班作業(yè)時間不超過1小時和超過2.5小時的共有多少人;
(3)若該市九年級共有3000名學生,請估計他們中完成作業(yè)超過1.5小時而不超過2.5小時的有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,線段AB的端點A、B均在小正方形的頂點上.
(1)在方格紙中畫出以AB為一條直角邊的等腰直角△ABC,頂點C在小正方形的頂點上;
(2)在方格紙中畫出△ABC的中線BD,將線段DC繞點C順時針旋轉(zhuǎn)90°得到線段CD′,畫出旋轉(zhuǎn)后的線段CD′,連接BD′,直接寫出四邊形BDCD′的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校調(diào)查了若干名家長對“初中生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,根據(jù)圖中提供的信息,完成以下問題:
(1)本次共調(diào)查了 名家長;扇形統(tǒng)計圖中“很贊同”所對應的圓心角是 度.已知該校共有1600名家長,則“不贊同”的家長約有 名;請補全條形統(tǒng)計圖;
(2)從“不贊同”的五位家長中(兩女三男),隨機選取兩位家長對全校家長進行“學生使用手機危害性”的專題講座,請用樹狀圖或列表法求出選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 AB,CD是的兩條弦,直線AB,CD互相垂直,垂足為點E,連接AD,過點B作,垂足為點F,直線BF交直線CD于點G.
(1)如圖1當點E在外時,連接,求證BE平分∠GBC;
(2)如圖2當點E在內(nèi)時,連接AC,AG,求證:AC=AG
(3)在(2)條件下,連接BO,若BO平分,求線段EC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是的一條弦,點C是上一動點,且,點E、F分別是AC、BC的中點,直線EF與交于G、H兩點.若的半徑為5,則的最大值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABD=90°,延長AB至點E,使BE=AB,連接CE.
(1)求證:四邊形BECD是矩形;
(2)連接DE交BC于點F,連接AF,若CE=2,∠DAB=30°,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x22(k1)x+ k2+3=0的兩實數(shù)根為x1,x2,設t=,則t的最大值為( )
A.2B.2C.4D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D,E分別是AB,BC邊上的點,且DE∥AC,若,,則△ACD的面積為( )
A. 64 B. 72 C. 80 D. 96
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com