已知為△ABC的三邊長,則=                 

 

【答案】

2

【解析】

試題分析:根據(jù)三角形的任兩邊之和大于第三邊及二次根式的性質(zhì)化簡即可。

由題意得,,則,,

考點:本題考查的是三角形的三邊關(guān)系,二次根式的性質(zhì)

點評:解答本題的關(guān)鍵是掌握好三角形的三邊關(guān)系:三角形的任兩邊之和大于第三邊。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)認(rèn)真閱讀,并回答下面問題:
如圖,AD為△ABC的中線,S△ABD與S△ADC相等嗎?(友情提示:S表示三角形面積)
解:過A點作BC邊上的高h(yuǎn),
∵AD為△ABC的中線
∴BD=DC
∵S△ABD=
1
2
BD•h
S△ADC=
1
2
DC•h

∴S△ABD=S△ADC
(1)用一句簡潔的文字表示上面這段內(nèi)容的結(jié)論:
 

(2)利用上面所得的結(jié)論,用不同的割法分別把下面兩個三角形面積4等分,(只要割線不同就算一種)精英家教網(wǎng)
(3)已知:AD為△ABC的中線,點E為AD邊上的中點,若△ABC的面積為20,BD=4,求點E到BC邊的距離為多少?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:BF為∠ABC的角平分線,CF為外角∠ACG的角平分線,求:∠F與∠A的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)精英家教網(wǎng)閱讀并解答問題.
如圖,已知:AD為△ABC的中線,求證:AB+AC>2AD.
證明:延長AD至E使得DE=AD,連接EC,則AE=2AD
∵AD為△ABC的中線
∴BD=CD
在△ABD和△CED中
(     )
(     )
(     )

∴△ABD≌△CED
∴AB=EC
在△ACE中,根據(jù)三角形的三邊關(guān)系有
AC+EC
 
AE
而AB=EC,AE=2AD
∴AB+AC>2AD
這種輔助線方法,我們稱為“倍長中線法”,請利用這種方法解決以下問題:
(1)如圖,已知:CD為Rt△ABC的中線,∠ACB=90°,求證:CD=
1
2
AB
;
(2)把(1)中的結(jié)論用簡潔的語言描述出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知點O為△ABC的外心,若∠A=80°,則∠BOC的度數(shù)為
160
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:AD為△ABC的中線,AE是△ABD的中線,AB=BD.
(1)判斷△ABE與△CBA是否相似并說明理由;
(2)求證:AC=2AE.

查看答案和解析>>

同步練習(xí)冊答案