【題目】如圖,拋物線y=ax2+2x與x軸相交于點(diǎn)B,其對(duì)稱(chēng)軸為x=3.

(1)求直線AB的解析式;

(2)過(guò)點(diǎn)O作直線l,使lAB,點(diǎn)P是l上一動(dòng)點(diǎn),設(shè)以點(diǎn)A、B、O、P為頂點(diǎn)的四邊形面積為S,點(diǎn)P的橫坐標(biāo)為t,當(dāng)0<S≤18時(shí),求t的取值范圍;

(3)在(2)的條件下,當(dāng)t取最大值時(shí),拋物線上是否存在點(diǎn)Q,使OPQ為直角三角形且OP為直角邊,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

【答案】(1)y=﹣x+6;(2)﹣3≤t<0或0<t≤3;(3)存在.點(diǎn)Q的坐標(biāo)為(3,3)或(6,0)或(﹣3,﹣9).

【解析】

(1)利用拋物線的對(duì)稱(chēng)性得到點(diǎn)B坐標(biāo)為(6,0),再把B點(diǎn)坐標(biāo)代入y=ax2+2x中求出a得到拋物線解析式;接著把一般式配成頂點(diǎn)式得到A點(diǎn)坐標(biāo),然后利用待定系數(shù)法求直線AB的解析式;
(2)易得直線解析式為y=-x,則可設(shè)P點(diǎn)坐標(biāo)為(t,-t),討論:當(dāng)點(diǎn)P在第四象限時(shí)(t>0),利用三角形面積公式可得到S=SAOB+SPOB=9+3t,再利用S的范圍可得到t的范圍;當(dāng)點(diǎn)P在第二象限時(shí)(t<0),作PM⊥x軸于M,設(shè)對(duì)稱(chēng)軸與x軸交點(diǎn)為N.如圖,利用S=S梯形PANM+SANB-SPMO得到S=[3+(-t)](3-t)+33-(-t)(-t),然后利用S的范圍確定對(duì)應(yīng)t的范圍;
(3)依題意得到t=3,則P(3,-3),討論:當(dāng)直角頂點(diǎn)為點(diǎn)O時(shí),OP⊥OQ,易得直線OQ的解析式為y=x,則解方程組

得此時(shí)點(diǎn)Q的坐標(biāo);當(dāng)直角頂點(diǎn)為點(diǎn)P時(shí),過(guò)點(diǎn)P作直線的垂線交拋物線于點(diǎn)Q,則可設(shè)直線PQ的解析式為y=x+b,接著把P(3,-3)代入求出b得到直線PQ的解析式為y=x-6,然后解方程組得此時(shí)Q點(diǎn)坐標(biāo).

解:(1)∵點(diǎn)BO(0,0)關(guān)于x=3對(duì)稱(chēng),

∴點(diǎn)B坐標(biāo)為(6,0),

B(6,0)代入y=ax2+2x36a+12=0,解得a=﹣ ,

∴拋物線解析式為y=﹣x2+2x;

y=﹣x2+2x=﹣(x﹣3)2+3,

∴頂點(diǎn)A的坐標(biāo)為(3,3),

設(shè)直線AB解析式為y=kx+b.

A(3,3),B(6,0)代入得 ,解得 ,

∴直線AB的解析式為y=﹣x+6;

(2)∵直線∥AB且過(guò)點(diǎn)O,

∴直線解析式為y=﹣x,

設(shè)P點(diǎn)坐標(biāo)為(t,﹣t),

當(dāng)點(diǎn)P在第四象限時(shí)(t>0),

S=SAOB+SPOB=63+6|﹣t|=9+3t,

0<S≤18,

0<9+3t≤18,解得﹣3<t≤3.

t>0,

0<t≤3;

當(dāng)點(diǎn)P在第二象限時(shí)(t<0),

PMx軸于M,設(shè)對(duì)稱(chēng)軸與x軸交點(diǎn)為N.如圖,

S=S梯形PANM+SANB﹣SPMO [3+(﹣t)](3﹣t)+33﹣(﹣t)(﹣t)

=﹣3t+9,

0<S≤18,

0<﹣3+9≤18,解得﹣3≤t<3.

t<0,

﹣3≤t<0;

綜上所述,t的取值范圍是﹣3≤t<00<t≤3;

(3)存在.

依題意可知,t=3,則P(3,﹣3)

當(dāng)直角頂點(diǎn)為點(diǎn)O時(shí),OPOQ,

∴直線OQ的解析式為y=x,

解方程組 ,此時(shí)點(diǎn)Q的坐標(biāo)為(3,3);

當(dāng)直角頂點(diǎn)為點(diǎn)P時(shí),過(guò)點(diǎn)P作直線的垂線交拋物線于點(diǎn)Q,

設(shè)直線PQ的解析式為y=x+b,

P(3,﹣3)代入得b=﹣6,

∴直線PQ的解析式為y=x﹣6,

解方程組 ,此時(shí)Q點(diǎn)坐標(biāo)為(6,0)或(﹣3,﹣9),

綜上所述,點(diǎn)Q的坐標(biāo)為(3,3)或(6,0)或(﹣3,﹣9).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一水庫(kù)大壩的橫斷面為梯形ABCD,壩頂寬6米,壩高10米,斜坡AB的坡度i1=1:3,斜坡CD的坡度i2=1:1.

(1)求斜坡AB的長(zhǎng)(結(jié)果保留根號(hào));

(2)求壩底AD的長(zhǎng)度;

(3)求斜坡CD的坡角α.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最小值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列條件中,不能判定四邊形ABCD為矩形的是(

A.ABCD,ABCD,ACBDB.A=∠B=∠D90°

C.ABBC,ADCD,且∠C90°D.ABCDADBC,∠A90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠C90°,ACBC,DE分別在AC、BC上,若∠DBC2BAE,AB4,CD,則CE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點(diǎn)DAE∥BDCB的延長(zhǎng)線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( )

A. 40° B. 45° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線軸分別交于點(diǎn)A和點(diǎn)B,MOB上一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在軸上的點(diǎn)B′處,試求出直線AM的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(1,a是反比例函數(shù)的圖象上一點(diǎn)直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,B(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點(diǎn)D坐標(biāo),并直接寫(xiě)出y1y2時(shí)x的取值范圍

(3)動(dòng)點(diǎn)Px,0)x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BCx軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),EAD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過(guò)點(diǎn)C和點(diǎn)E,過(guò)點(diǎn)B的直線y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.

(1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);

(2)求直線BF的解析式;

(3)直接寫(xiě)出y1>y2時(shí),自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案