【題目】如圖,拋物線軸交于A(-1,0),B(3,0)兩點,與軸交于點C,頂點為D,下列結論正確的是( )

A. abc<0 B. 3a+c=0 C. 4a-2b+c<0 D. 方程ax2+bx+c=-2(a≠0)有兩個不相等的實數(shù)根

【答案】B

【解析】

由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.

由圖象可得,a>0,b<0,c<0,

abc>0,故選項A錯誤,

∵拋物線y=ax2+bx+c(a≠0)與x軸交于A(-1,0)、B(3,0)兩點,

-=1,得b=-2a,

x=-1時,y=a-b+c=a+2a+c=3a+c=0,故選項B正確,

x=-2時,y=4a-2b+c>0,故選項C錯誤,

由函數(shù)圖象可知,如果函數(shù)y=ax2+bx+c(a≠0)頂點的縱坐標大于-2,則方程ax2+bx+c=-2(a≠0)沒有實數(shù)根,故選項D錯誤,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=1∠B=30°,且AC邊在直線l上,將△ABC繞點A順時針旋轉(zhuǎn)到位置可得到點P1,此時;將位置的三角形繞點P1順時針旋轉(zhuǎn)到位置,可得到點P2,此時;將位置的三角形繞點P2順時針旋轉(zhuǎn)到位置,可得到點P3,此時;……,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點為止,則=___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AE平分∠DABCDE點、CF平分∠DCBAB于點F

1)求證:四邊形AECF是平行四邊形;

2)若BG平分∠ABCCDG點,且AD2EG2,求四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知xy

1)求x2+xy+y2

2)若x的小數(shù)部分為a,y的整數(shù)部分為b,求ax+by的平方根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax+bx+4x軸交于點A(-3,0)和B(2,0),與y軸交于點C.

(1)求拋物線的解析式;

(2)如圖1,若點DCB的中點,將線段DB繞點D旋轉(zhuǎn),點B的對應點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;

(3)如圖2,若點D為直線BC或直線AC上的一點,Ex軸上一動點,拋物線y=ax+bx+4對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+x1的圖象與x軸交于A、B兩點,與y軸交于點C,連接AC,點P是拋物線上的一個動點,記△APC的面積為S,當S=2時,相應的點P的個數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平形行四邊形ABCD中,連接對角線BD,AB=BD,E為線段AD上一點,AE=BE

(1)如圖1,若∠ABE=30,CD=,求DE的長;

(2)如圖2,F(xiàn)為線段BE上一點,DE=BF,連接AF、DF,DF的延長線交AB于點G,若AF=2DE,求證:DF=2GF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,則下列結論: ①a+b+c0;②a–b+c0;③b+2a0;④abc0,其中正確的是 (填寫正確的序號)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1:在平面直角坐標系內(nèi),O為坐標原點,線段AB兩端點在坐標軸上且點A(﹣4,0),點B0,3),將AB向右平移4個單位長度至OC的位置

1)直接寫出點C的坐標   ;

2)如圖2,過點CCDx軸于點D,在x軸正半軸有一點E10),過點Ex軸的垂線,在垂線上有一動點P,直接寫出:D的坐標   ;三角形PCD的面積為   

3)如圖3,在(2)的條件下,連接AC,當△ACP的面積為時,直接寫出點P的坐標   

查看答案和解析>>

同步練習冊答案