【題目】如圖,拋物線與軸交于A(-1,0),B(3,0)兩點,與軸交于點C,頂點為D,下列結論正確的是( )
A. abc<0 B. 3a+c=0 C. 4a-2b+c<0 D. 方程ax2+bx+c=-2(a≠0)有兩個不相等的實數(shù)根
【答案】B
【解析】
由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
由圖象可得,a>0,b<0,c<0,
∴abc>0,故選項A錯誤,
∵拋物線y=ax2+bx+c(a≠0)與x軸交于A(-1,0)、B(3,0)兩點,
∴-=1,得b=-2a,
當x=-1時,y=a-b+c=a+2a+c=3a+c=0,故選項B正確,
當x=-2時,y=4a-2b+c>0,故選項C錯誤,
由函數(shù)圖象可知,如果函數(shù)y=ax2+bx+c(a≠0)頂點的縱坐標大于-2,則方程ax2+bx+c=-2(a≠0)沒有實數(shù)根,故選項D錯誤,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=1,∠B=30°,且AC邊在直線l上,將△ABC繞點A順時針旋轉(zhuǎn)到位置①可得到點P1,此時;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時;……,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點為止,則=___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,AE平分∠DAB交CD于E點、CF平分∠DCB交AB于點F.
(1)求證:四邊形AECF是平行四邊形;
(2)若BG平分∠ABC交CD于G點,且AD=2EG=2,求四邊形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線y=ax+bx+4與x軸交于點A(-3,0)和B(2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,若點D為CB的中點,將線段DB繞點D旋轉(zhuǎn),點B的對應點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;
(3)如圖2,若點D為直線BC或直線AC上的一點,E為x軸上一動點,拋物線y=ax+bx+4對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+x1的圖象與x軸交于A、B兩點,與y軸交于點C,連接AC,點P是拋物線上的一個動點,記△APC的面積為S,當S=2時,相應的點P的個數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平形行四邊形ABCD中,連接對角線BD,AB=BD,E為線段AD上一點,AE=BE
(1)如圖1,若∠ABE=30,CD=,求DE的長;
(2)如圖2,F(xiàn)為線段BE上一點,DE=BF,連接AF、DF,DF的延長線交AB于點G,若AF=2DE,求證:DF=2GF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論: ①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正確的是 (填寫正確的序號)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1:在平面直角坐標系內(nèi),O為坐標原點,線段AB兩端點在坐標軸上且點A(﹣4,0),點B(0,3),將AB向右平移4個單位長度至OC的位置
(1)直接寫出點C的坐標 ;
(2)如圖2,過點C作CD⊥x軸于點D,在x軸正半軸有一點E(1,0),過點E作x軸的垂線,在垂線上有一動點P,直接寫出:①點D的坐標 ; ②三角形PCD的面積為 ;
(3)如圖3,在(2)的條件下,連接AC,當△ACP的面積為時,直接寫出點P的坐標 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com