【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)當(dāng)A,B,C三點在同一直線上時(如圖1),直接寫出線段AD與NE的數(shù)量關(guān)系為 .
(2)將圖1中的△BCE繞點B旋轉(zhuǎn),當(dāng)A,B,E三點在同一直線上時(如圖2),判斷△ACN是什么特殊三角形并說明理由.
(3)將圖1中△BCE繞點B旋轉(zhuǎn)到圖3位置,此時A,B,M三點在同一直線上.若AC=3 ,AD=1,則四邊形ACEN的面積為 .
【答案】
(1)AD=NE
(2)解:(2)結(jié)論:△ACN為等腰直角三角形.
理由,如圖2,
∵△BAD和△BCE均為等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,
∴∠DAE+∠NEA=180°.
∵∠DAE=90°,
∴∠NEA=90°.
∴∠NEC=135°.
∵A,B,E三點在同一直線上,
∴∠ABC=180°﹣∠CBE=135°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已證),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN為等腰直角三角形
(3)
【解析】解:(1)結(jié)論:AD=NE.
理由:如圖1,
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵點M為DE的中點,
∴DM=EM.
在△ADM和△NEM中,
.
∴△ADM≌△NEM.
∴AD=NE.
解:(3)如圖3中,連接CM.
∵AD∥NE,M為中點,
∴易得△ADM≌△NEM,
∴AD=NE.
∵AD=AB,
∴AB=NE,
∵AD∥NE,
∴AF⊥NE,
在四邊形BCEF中,
∵∠BCE=∠BFE=90°
∴∠FBC+∠FEC=360°﹣180°=180°
∵∠FBC+∠ABC=180°
∴∠ABC=∠FEC
在△ABC和△NEC中,
,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN為等腰直角三角形,
由(1)可知,△AMD≌△NME,
∴AM=MN,AD=NE=1,
∴CM⊥AN,AM=CM=MN,
∵AC=3 ,
∴AM=CM=MN=3,
∴S四邊形ACNE=S△AMC+S直角梯形MNEC= ×3×3+ ×(3+1)×3= .
所以答案是 .
【考點精析】通過靈活運用旋轉(zhuǎn)的性質(zhì),掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張買了張元的乘車IC卡,如果他乘車的次數(shù)用表示,則記錄他每次乘車后的余額(元)如下表:
次數(shù)m | 余額n(元) |
1 | 50—0.8 |
2 | 50—1.6 |
3 | 50—2.4 |
4 | 50—3.2 |
…… | …… |
【1】⑴寫出乘車的次數(shù)表示余額(元)的關(guān)系式;
【2】⑵利用上述關(guān)系式計算小張乘了13次車后還剩下多少元?
【3】⑶小張最多能乘幾次車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于( )
A.60
B.80
C.30
D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個等腰三角形的周長為25cm.
(1)已知腰長是底邊長的2倍,求各邊的長;
(2)已知其中一邊的長為6cm.求其它兩邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā)勻速前行,且途中休息一段時間后繼續(xù)以原速前行.家到公園的距離為2000m,如圖是小明和爸爸所走的路程S(m)與步行時間t(min)的函數(shù)圖象.
(1)直接寫出BC段圖象所對應(yīng)的函數(shù)關(guān)系式(不用寫出t的取值范圍).
(2)小明出發(fā)多少時間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早18分鐘到達公園,則小明在步行過程中停留的時間需減少分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點D為圓心,作圓心角為90°的扇形DEF,點C恰在EF上,設(shè)∠ADE=α(0°<α<90°),當(dāng)α由小到大變化時,圖中陰影部分的面積( )
A.由小變大
B.由大變小
C.不變
D.先由小變大,后由大變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖象,下列結(jié)論錯誤的是( )
A.乙前4秒行駛的路程為48米
B.在0到8秒內(nèi)甲的速度每秒增加4米/秒
C.兩車到第3秒時行駛的路程相等
D.在4至8秒內(nèi)甲的速度都大于乙的速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了在即將到來的體育中考中取得好的成績,某校準(zhǔn)備在體育中考前將學(xué)校九年級的名學(xué)生送到體育館進行一次模擬考試,經(jīng)學(xué)校和客車公司聯(lián)系了解到,輛大型客車和輛中型客車可載客人,輛大型客車和輛中型客車可載客人,若要將這些學(xué)生--次性全部送到體育館,且恰好裝滿.根據(jù)以上信息,回答下面問題:
(1)每輛大型客車和中型客車各載多少人?
(2)該校共有多少種租車方案?.
(3)若每輛大型客車需租金元,每輛中型客車需租金元,請你給該校提供一個最省錢的租車建議,并求出最少租車費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,A F∥CE,且交BC于點F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com