【題目】如圖,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分線交AC于D,則∠CBD的度數(shù)為( )
A.50°
B.30°
C.75°
D.45°
【答案】D
【解析】∵△ABC是等腰三角形,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°-75°-60°=45°.故選D.
【考點(diǎn)精析】關(guān)于本題考查的三角形的內(nèi)角和外角和線段垂直平分線的性質(zhì),需要了解三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ AOB=90°,且點(diǎn)A,B分別在反比例函數(shù)(x<0),(x>0)的圖象上,且k1,k2分別是方程x2-x-6=0的兩根.
(1)求k1,k2的值;
(2)連接AB,求tan∠ OBA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn)(點(diǎn)與點(diǎn)不重合),拋物線經(jīng)過點(diǎn),拋物線的頂點(diǎn)為.
(1) °;
(2)求的值;
(3)在拋物線上是否存在點(diǎn),能夠使?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜經(jīng)營(yíng)戶從蔬菜批發(fā)市場(chǎng)批發(fā)蔬菜進(jìn)行零售,部分蔬菜批發(fā)價(jià)格與零售價(jià)格如表:
蔬菜品種 | 西紅柿 | 青椒 | 西蘭花 | 豆角 |
批發(fā)價(jià)(元/㎏) | 3.6 | 5.4 | 8 | 4.8 |
零售價(jià)(元/㎏) | 5.4 | 8.4 | 14 | 7.6 |
請(qǐng)解答下列問題:
(1)第一天,該經(jīng)營(yíng)戶批發(fā)西紅柿和西蘭花兩種蔬菜共300㎏,用去了1520元錢,這兩種蔬菜當(dāng)天全部售完一共賺了多少元錢?
(2)第二天,該經(jīng)營(yíng)戶用1520元仍然批發(fā)西紅柿和西蘭花,要想當(dāng)天全部售完后所賺錢數(shù)不少于1050元,則該經(jīng)營(yíng)戶最多能批發(fā)西紅柿多少㎏?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過建設(shè)者三年多艱苦努力地施工,貫通我市A、B兩地又一條高速公路全線通車。已知原來(lái)A地到B地普通公路長(zhǎng)150km,高速公路路程縮短了30km,如果一輛小車從A地到B地走高速公路的平均速度可以提高到原來(lái)的1.5倍,需要的時(shí)間可以比原來(lái)少用1小時(shí)10分鐘。求小車走普通公路的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,∠ADC的平分線交直線BC于點(diǎn)E、交AB的延長(zhǎng)線于點(diǎn)F,連接AC.
(1)如圖1,若∠ADC=90°,G是EF的中點(diǎn),連接AG、CG.
①求證:BE=BF;
②請(qǐng)判斷△AGC的形狀,并說(shuō)明理由.
(2)如圖2,若∠ADC=60°,將線段FB繞點(diǎn)F順時(shí)針旋轉(zhuǎn)60°至FG,連接AG、CG,判斷△AGC的形狀.(直接寫出結(jié)論不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四個(gè)結(jié)論:①AC⊥BD;②BC=DE;③∠DBC=∠DAC;④△ABC是正三角形.請(qǐng)寫出正確結(jié)論的序號(hào)(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com